Skip to main content
Log in

Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The control of anisotropic crystal growth is critical for directing the orientation of crystal lattice planes, and it plays a key role towards understanding the effects of different planes on chemical reactions. Here, we report on the photoelectrochemical properties of plate-structured tungsten trioxide (WO3) thin films prepared from facet-controlled rectangular platelets of hydrotungstite (WO3·2H2O) and tungstite (WO3·H2O), which are directly grown on tungsten substrates. The WO3 thin films, prepared via WO3·2H2O platelets, show relatively stable current for photoelectrochemical water splitting and methanol oxidation. On the other hand, the photocurrent of the WO3 thin films prepared via WO3·H2O platelets was significantly decreased during the photoelectrochemical oxidation of water, which is likely due to the accumulation of partially oxidized intermediates such as peroxo species on the surface. These results indicate that the surface nanostructures of WO3 may have a significant influence on photoelectrode efficiency and selectivity for the catalytic oxygen evolution reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ma RZ, Sasaki T (2010) Adv Mater 22:5082–5104

    Article  CAS  Google Scholar 

  2. Schaak RE, Mallouk TE (2002) Chem Commun:706–707

  3. Takagaki A, Sugisawa M, Lu DL, Kondo JN, Hara M, Domen K, Hayashi S (2003) J Am Chem Soc 125:5479–5485

    Article  CAS  Google Scholar 

  4. Ida S, Ogata C, Eguchi M, Youngblood WJ, Mallouk TE, Matsumoto Y (2008) J Am Chem Soc 130:7052–7059

    Article  CAS  Google Scholar 

  5. Maeda K, Eguchi M, Lee SHA, Youngblood WJ, Hata H, Mallouk TE (2009) J Phys Chem C 113:7962–7969

    Article  CAS  Google Scholar 

  6. Manga KK, Zhou Y, Yan YL, Loh KP (2009) Adv Funct Mater 19:3638–3643

    Article  CAS  Google Scholar 

  7. Yu SH, Liu B, Mo MS, Huang JH, Liu XM, Qian YT (2003) Adv Funct Mater 13:639–647

    Article  CAS  Google Scholar 

  8. Chen SH, Carroll DL (2002) Nano Lett 2:1003–1007

    Article  CAS  Google Scholar 

  9. Sigman MB, Ghezelbash A, Hanrath T, Saunders AE, Lee F, Korgel BA (2003) J Am Chem Soc 125:16050–16057

    Article  CAS  Google Scholar 

  10. Tian ZRR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu HF (2003) Nature Mater 2:821–826

    Article  CAS  Google Scholar 

  11. Zhang YW, Sun X, Si R, You LP, Yan CH (2005) J Am Chem Soc 127:3260–3261

    Article  CAS  Google Scholar 

  12. Liu JP, Li YY, Huang XT, Li GY, Li ZK (2008) Adv Funct Mater 18:1448–1458

    Article  CAS  Google Scholar 

  13. Jun YW, Casula MF, Sim JH, Kim SY, Cheon J, Alivisatos AP (2003) J Am Chem Soc 125:15981–15985

    Article  CAS  Google Scholar 

  14. Wei GZ, Lu X, Ke FS, Huang L, Li JT, Wang ZX, Zhou ZY, Sun SG (2010) Adv Mater 22:4364–4367

    Article  CAS  Google Scholar 

  15. Lazzeri M, Vittadini A, Selloni A (2001) Phys Rev B: Condens Matter 63:155409

    Article  Google Scholar 

  16. Chen DL, Gao L, Yasumori A, Kuroda K, Sugahara Y (2008) Small 4:1813–1822

    Article  CAS  Google Scholar 

  17. Widenkvist E, Quinlan RA, Holloway BC, Grennberg H, Jansson U (2008) Cryst Growth Des 8:3750–3753

    Article  CAS  Google Scholar 

  18. Amano F, Li D, Ohtani B (2010) Chem Commun 46:2769–2771

    Article  CAS  Google Scholar 

  19. Amano F, Li D, Ohtani B (2011) J Electrochem Soc 158:K42–K46

    Article  CAS  Google Scholar 

  20. Chen D, Ye JH (2008) Adv Funct Mater 18:1922–1928

    Article  CAS  Google Scholar 

  21. Erbs W, Desilvestro J, Borgarello E, Grätzel M (1984) J Phys Chem 88:4001–4006

    Article  CAS  Google Scholar 

  22. Ohno T, Tanigawa F, Fujihara K, Izumi S, Matsumura M (1998) J Photochem Photobiol A 118:41–44

    Article  CAS  Google Scholar 

  23. Wang HL, Lindgren T, He JJ, Hagfeldt A, Lindquist SE (2000) J Phys Chem B 104:5686–5696

    Article  CAS  Google Scholar 

  24. Santato C, Ulmann M, Augustynski J (2001) Adv Mater 13:511–514

    Article  CAS  Google Scholar 

  25. Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K (2008) Chem Commun:5565–5567

  26. Abe R, Takami H, Murakami N, Ohtani B (2008) J Am Chem Soc 130:7780–7781

    Article  CAS  Google Scholar 

  27. Miseki Y, Kusama H, Sugihara H, Sayama K (2010) J Phys Chem Lett 1:1196–1200

    Article  CAS  Google Scholar 

  28. Macphee DE, Rosenberg D, Skellern MG, Wells RP, Duffy JA, Killham KS (2011) J Solid State Electrochem 15:99–103

    Article  CAS  Google Scholar 

  29. Berger S, Tsuchiya H, Ghicov A, Schmuki P (2006) Appl Phys Lett 88:203119

    Article  Google Scholar 

  30. Kalantar-zadeh K, Vijayaraghavan A, Ham MH, Zheng HD, Breedon M, Strano MS (2010) Chem Mater 22:5660–5666

    Article  CAS  Google Scholar 

  31. Jiao ZH, Wang JM, Ke L, Sun XW, Demir HV (2011) ACS Appl Mater Interfaces 3:229–236

    Article  CAS  Google Scholar 

  32. Su JZ, Feng XJ, Sloppy JD, Guo LJ, Grimes CA (2011) Nano Lett 11:203–208

    Article  CAS  Google Scholar 

  33. Ng C, Ye CH, Ng YH, Amal R (2010) Cryst Growth Des 10:3794–3801

    Article  CAS  Google Scholar 

  34. Shibuya M, Miyauchi M (2009) Adv Mater 21:1373–1376

    Article  CAS  Google Scholar 

  35. Szymanski JT, Roberts AC (1984) Can Mineral 22:681–688

    CAS  Google Scholar 

  36. Li YM, Hibino M, Miyayania M, Kudo T (2000) Solid State Ionics 134:271–279

    Article  CAS  Google Scholar 

  37. Yagi M, Maruyama S, Sone K, Nagai K, Norimatsu T (2008) J Solid State Chem 181:175–182

    Article  CAS  Google Scholar 

  38. Amano F, Tian M, Wu G, Ohtani B, Chen A (2011) ACS Appl Mater Interfaces 3:4047–1052

    Article  CAS  Google Scholar 

  39. Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) J Solid State Chem 67:235–247

    Article  CAS  Google Scholar 

  40. Pecquenard B, Lecacheux H, Livage J, Julien C (1998) J Solid State Chem 135:159–168

    Article  CAS  Google Scholar 

  41. Chemseddine A, Babonneau F, Livage J (1987) J Non-Crystalline Solids 91:271–278

    Article  CAS  Google Scholar 

  42. Yamakata A, Ishibashi T, Onishi H (2001) J Phys Chem B 105:7258–7262

    Article  CAS  Google Scholar 

  43. Yamakata A, Ishibashi T, Onishi H (2002) J Phys Chem B 106:9122–9125

    Article  CAS  Google Scholar 

  44. Santato C, Ulmann M, Augustynski J (2001) J Phys Chem B 105:936–940

    Article  CAS  Google Scholar 

  45. Peter LM (1990) Chem Rev 90:753–769

    Article  CAS  Google Scholar 

  46. Augustynski J, Solarska R, Hagemann H, Santato C (2006) Proc SPIE 6340:63400J

    Article  Google Scholar 

  47. Seabold JA, Choi KS (2011) Chem Mater 23:1105–1112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institutional Program for Young Researcher Overseas Visits from the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid for Young Scientists (A) (No. 23686114) from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiaki Amano.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amano, F., Tian, M., Ohtani, B. et al. Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets. J Solid State Electrochem 16, 1965–1973 (2012). https://doi.org/10.1007/s10008-011-1586-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1586-2

Keywords

Navigation