Journal of Solid State Electrochemistry

, Volume 16, Issue 3, pp 977–983

Low-voltage anodized TiO2 nanostructures studied by alternate current electrochemical microscopy and photoelectrochemical measurements

Authors

  • Marina E. Rincón
    • Departamento de Materiales Solares, Centro de Investigación en EnergíaUniversidad Nacional Autónoma de México
  • Cecilia Cuevas-Arteaga
    • Facultad de Ciencias Químicas e Ingeniería, CIICAP, Centro de Investigación en Ingeniería y Ciencias AplicadasUniversidad Autónoma del Estado de Morelos
  • Mauricio Solís de la Fuente
    • Departamento de Materiales Solares, Centro de Investigación en EnergíaUniversidad Nacional Autónoma de México
    • Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de Ingeniería QuímicaUniversidad de Guadalajara
  • Norberto Casillas
    • Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de QuímicaUniversidad de Guadalajara
  • Maximiliano Bárcena-Soto
    • Centro Universitario de Ciencias Exactas e Ingenierías, Departamento de QuímicaUniversidad de Guadalajara
Original Paper

DOI: 10.1007/s10008-011-1460-2

Cite this article as:
Rincón, M.E., Cuevas-Arteaga, C., Solís de la Fuente, M. et al. J Solid State Electrochem (2012) 16: 977. doi:10.1007/s10008-011-1460-2

Abstract

This paper presents the characterization of TiO2 nanostructures obtained by low-voltage anodization using alternate current electrochemical microscopy (AC-SECM) and photoelectrochemical (PEC) measurements. TiO2 nanostructures were obtained from the exposure of titanium foils to several aqueous acidic solutions of hydrofluoric acid + phosphoric acid at potentials of 1 to 3 V. Scanning electron microscopy, X ray diffraction, and atomic force microscopy studies evidence the formation of a thin porous amorphous layer (<600 nm) with pore size in the range of 200–1,000 nm. By AC-SECM studies at different bias, we were able to confirm the unambiguous semiconducting properties of as-obtained porous titania films, as well as differences in surface roughness and conductivity in specimens obtained at both potentials. The difference in conductivity persists in air annealed samples, as demonstrated by electrochemical impedance spectroscopy and PEC measurements. Specimens obtained at 3 V show lower photocurrent and dark current than those obtained at 1 V, regardless of their larger conductivity, and we proposed it is due to differences on the oxide layer formed at the pore bottom.

Keywords

PorousAnodizationTitaniaPhotoelectrochemical

Copyright information

© Springer-Verlag 2011