, Volume 16, Issue 3, pp 977-983
Date: 23 Jun 2011

Low-voltage anodized TiO2 nanostructures studied by alternate current electrochemical microscopy and photoelectrochemical measurements

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This paper presents the characterization of TiO2 nanostructures obtained by low-voltage anodization using alternate current electrochemical microscopy (AC-SECM) and photoelectrochemical (PEC) measurements. TiO2 nanostructures were obtained from the exposure of titanium foils to several aqueous acidic solutions of hydrofluoric acid + phosphoric acid at potentials of 1 to 3 V. Scanning electron microscopy, X ray diffraction, and atomic force microscopy studies evidence the formation of a thin porous amorphous layer (<600 nm) with pore size in the range of 200–1,000 nm. By AC-SECM studies at different bias, we were able to confirm the unambiguous semiconducting properties of as-obtained porous titania films, as well as differences in surface roughness and conductivity in specimens obtained at both potentials. The difference in conductivity persists in air annealed samples, as demonstrated by electrochemical impedance spectroscopy and PEC measurements. Specimens obtained at 3 V show lower photocurrent and dark current than those obtained at 1 V, regardless of their larger conductivity, and we proposed it is due to differences on the oxide layer formed at the pore bottom.