Skip to main content
Log in

Evaluation of manganese and oxygen content in La0.7Sr0.3MnO3−δ and correlation with the thermodynamic data

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In order to understand how the thermodynamic properties are related to the oxygen and manganese content in the Sr-doped lanthanum manganites, nonstoichiometric perovskite phases La0.7Sr0.3MnO3δ have been investigated by using solid state electrochemical techniques, as well as wet chemical methods. The influence of the oxygen stoichiometry change on the thermodynamic properties was examined using the data obtained by a coulometric titration technique coupled with solid state electromotive force measurements (EMF). The results were correlated with the average Mn valence values as determined by a chemical method based on two independent iodometric titrations, with amperometric dead-stop end point detection. New features related to the relationship between the average Mn valence, the oxygen nonstoichiometry variation, and the thermodynamic behavior were evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuo JH, Anderson HU, Sparlin DM (1990) J Solid State Chem 87:55–63

    Article  CAS  Google Scholar 

  2. Mizusaki J (1992) Solid State Ionics 52:79–91

    Article  CAS  Google Scholar 

  3. Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:113–117

    Article  Google Scholar 

  4. Nowotny J, Rekas M (1998) J Am Ceram Soc 81:67–80

    Article  CAS  Google Scholar 

  5. Tanasescu S, Totir ND, Marchidan DI (1998) Electrochim Acta 43:1675–1681

    Article  CAS  Google Scholar 

  6. Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H, Dokiya M, Inaba H, Naraya K, Sasamoto T, Hashimoto T (2000) Solid State Ionics 129:163–177

    Article  CAS  Google Scholar 

  7. Fleig J (2003) Annu Rev Mater Res 33:361–382

    Article  CAS  Google Scholar 

  8. Fleig J, Maier J (2004) J Eur Ceram Soc 24:1343–1347

    Article  CAS  Google Scholar 

  9. Gauckler LJ, Beckel D, Buergler BE, Jud E, Muecke UR, Prestat M, Rupp JLM, Richter J (2004) Chimia 58:837–850

    Article  CAS  Google Scholar 

  10. Jonker GH, Santen JH (1950) Physica XVI 3:337–349

    Google Scholar 

  11. De Teresa JM, Dorr K, Muller KH, Shultz L (1998) Phys Rev B 58:5928–5931

    Article  Google Scholar 

  12. Abdelmoula N, Guidara K, Cheikh-Rouhou A, Dhahri E, Joubert JC (2000) J Solid State Chem 151:139–144

    Article  CAS  Google Scholar 

  13. Tanasescu S, Grecu MN, Marinescu C, Giurgiu LM, Chiriac H, Urse M (2009) Adv Appl Ceram 108:273–279

    Article  CAS  Google Scholar 

  14. Kofstad P, Petrov A (1993) On the defect structure and nonstoichiometry in doped perovskites: La1xSrxMnO3 ± δ. In: Poulsen FW et al (eds) Proc 14th Riso International Symposium on Material Science, Denmark, pp 287–296

  15. Poulsen FW (2000) Solid State Ionics 129:145–162

    Article  CAS  Google Scholar 

  16. Grundy AN, Hallstedt B, Gauckler LJ (2004) CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 28:191–201

    CAS  Google Scholar 

  17. Kuo JH, Anderson HU, Sparlin DM (1989) J Solid State Chem 83:52–60

    Article  CAS  Google Scholar 

  18. Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1991) Solid State Ionics 49:111–118

    Article  CAS  Google Scholar 

  19. Gordes P, Christiansen N (1994) Combustion synthesis of perovskite oxides used in SOFC technology. In: Bossel U (ed) Proc. 1st European SOFC Forum, PV 2. Lucerne, Switzerland, pp 567–575

  20. Charette GG, Flengas SN (1968) J Electrochem Soc 8:796–804

    Article  Google Scholar 

  21. Kelley KK (1960) U S Bur of Mines Bull 584

  22. Kelley KK, King EG (1961) U S Bur of Mines Bull 592

  23. Wagner C (1953) J Chem Phys 21:1819–1827

    Article  CAS  Google Scholar 

  24. Weppner W, Chen L-C, Piekarczyk W (1980) Z Naturforsch 35a:381–388

    CAS  Google Scholar 

  25. Marchidan DI, Tanasescu S (1976) Rev Roum Chim 21:1451–1455

    CAS  Google Scholar 

  26. Vogel AI (1964) A text-book of quantitative inorganic analysis including elementary instrumental analysis. Longmans, London

    Google Scholar 

  27. Licci F, Turilli G, Ferro P (1996) J Magn Magn Mater 164:L268–L272

    Article  CAS  Google Scholar 

  28. Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) J Am Ceram Soc 80:2175–2198

    Article  CAS  Google Scholar 

  29. Mizusaki J, Mima Y, Yamauchi S, Fueki K, Tagawa H (1989) J Solid State Chem 80:102–111

    Article  CAS  Google Scholar 

  30. Stull DR, Prophet H (eds) (1971) ANAF thermochemical tables, 2nd edn. US Government Printing Office, National Bureau of Standards, Washington, D.C

    Google Scholar 

  31. Kröger FA, Vink HJ (1956) Relations between the concentrations of imperfections in crystalline solids. In: Seitz F, Turnball D (eds) Solid state physics, vol 3. Academic, New York, pp 310–438

    Google Scholar 

Download references

Acknowledgment

We wish to thank Risø National Laboratory-Denmark for supplying the solid electrolyte used in EMF measurements for thermodynamic investigations.

This paper has been prepared in the frame of the PN–II–ID–PCE Project no. 50/2007 under financial support from the Romanian Ministry of Research and Education (ANCS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Speranta Tanasescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanasescu, S., Marinescu, C., Maxim, F. et al. Evaluation of manganese and oxygen content in La0.7Sr0.3MnO3−δ and correlation with the thermodynamic data. J Solid State Electrochem 15, 189–196 (2011). https://doi.org/10.1007/s10008-010-1093-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1093-x

Keywords

Navigation