Skip to main content
Log in

Enhanced ionic conductivity in novel nanocomposite gel polymer electrolyte based on intercalation of PMMA into layered LiV3O8

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the present work, a novel polymer electrolyte based on poly(methyl methacrylate) (PMMA)/layered lithium trivanadate (LiV3O8) nanocomposite has been investigated. X-ray diffraction (XRD) study shows that d-spacing is increased from 6.3 ± 0.1 Å to 12.8 ± 0.1 Å upon intercalation of the polymer into the layered LiV3O8. Room temperature ionic conductivity of the obtained nanocomposite gel polymer electrolyte is found to be superior to that of conventional PMMA-based gel polymer electrolyte. Enhancement in ionic conductivity of the nanocomposite gel electrolyte is attributed to the formation of a two-dimensional channel as a result of decreased interaction between Li+ and V3O 8 layers as confirmed by FTIR. SEM results show aggregation of nanocomposite particles resulting from extension of some of the polymer chains from interlayer to the edge providing paths for Li+ ion transport. Interfacial stability of nanocomposite gel electrolyte is also found to be better than that of the conventional PMMA-based gel polymer electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature (London) 414:359–367

    Article  CAS  Google Scholar 

  2. Bertheir C, Gorecki W, Minier M, Armand MB, Chanbagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11:91–95

    Article  Google Scholar 

  3. Nagasubramanian G, Attia AI, Halpert G (1994) A polyacrylonitrile-based gelled electrolyte: electrochemical kinetic studies. J Appl Electrochem 24:298–302

    Article  Google Scholar 

  4. Morales E, Acosta JL (1997) Thermal and electrical characterization of plasticized polymer electrolytes based on polyethers and polyphosphazene blends. Solid State Ion 96:99–106

    Article  CAS  Google Scholar 

  5. Abbrent S, Lindgren J, Tegenfeldt J, Wendsjo A (1998) Gel electrolytes prepared from oligo(ethylene glycol)dimethacrylate: glass transition, conductivity and Li+-coordination. Electrochim Acta 43:1185–1191

    Article  CAS  Google Scholar 

  6. Dolodnitsky D, Ardel G, Strauss E, Peled E, Lareah Y, Rigenberg Y (1997) Conduction mechanism in concentrated LiI-polyethylene oxide Al2O3-based solid electrolytes. J Electrochem Soc 144:3484–3491

    Article  Google Scholar 

  7. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10:439–448

    Article  CAS  Google Scholar 

  8. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  9. Sekhon SS, Deepa M, Agnihotry SA (2000) Solvent effect on gel electrolytes containing lithium salts. Solid State Ion 136–137:1189–1192

    Article  Google Scholar 

  10. Kim C-H, Lee K-H, Kim W-S, Park J, Seung D-Y (2001) Ion conductivities and interfacial characteristics of the plasticized polymer electrolytes based on poly(methyl methacrylate-co-Li maleate). J Power Sources 94:163–168

    Article  CAS  Google Scholar 

  11. Svanberg C, Bergman R, Borjesson L, Jacobsson P (2001) Diffusion of solvent/salt and segmental relaxation in polymer gel electrolytes. Electrochim Acta 46:1447–1451

    Article  CAS  Google Scholar 

  12. Vondrák J, Reitera J, Velická J, Sedlaříková M (2004) PMMA-based aprotic gel electrolytes. Solid State Ion 170:79–82

    Article  CAS  Google Scholar 

  13. Sharma JP, Sekhon SS (2007) Nanodispersed polymer gel electrolytes: conductivity modification with the addition of PMMA and fumed silica. Solid State Ion 178:439–445

    Article  CAS  Google Scholar 

  14. Rajendran S, Uma T (2000) Conductivity studies on PVC/PMMA polymer blend electrolyte. Mater Lett 44:242–247

    Article  CAS  Google Scholar 

  15. Rajendran S, Kannan R, Mahendran O (2001) An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes. Mater Lett 49:172–179

    Article  CAS  Google Scholar 

  16. Kumara R, Subramania A, Sundaram NTK, Vijaya Kumar G, Baskaran I (2007) Effect of MgO nanoparticles on ionic conductivity and electrochemical properties of nanocomposite polymer electrolyte. J Membr Sci 300:104–110

    Article  CAS  Google Scholar 

  17. Ahmad S, Agnihotry AA, Ahmad S (2007) Nanocomposite polymer electrolytes by in situ polymerization of methyl methacrylate: for electrochemical applications. J Appl Polym Sci 107:3042–3048

    Article  CAS  Google Scholar 

  18. Ruiz-Hitzky E (1994) Conducting polymers intercalated in layered solids. Adv Mater 5:334–340

    Article  Google Scholar 

  19. Jeevanandam P, Vasudevan S (1998) Conductivity of a confined polymer electrolyte: lithium−polypropylene glycol intercalated in layered CdPS3. J Phy Chem B 102:4753–4758

    Article  CAS  Google Scholar 

  20. Arun N, Vasudevan S, Ramanathan KV (2000) Orientation and motion of interlamellar water: an infrared and NMR investigation of water in the galleries of layered Cd0.75PS3K0.5(H2O) y . J Am Chem Soc 122:6028–6038

    Article  CAS  Google Scholar 

  21. Chen H-W, Lin T-P, Chang F-C (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43:5281–5288

    Article  CAS  Google Scholar 

  22. Singhal RG, Capracotta MD, Martin JD, Khan SA, Fedkiw PS (2004) Transport properties of hectorite based nanocomposite single ion conductors. J Power Sources 128:247–255

    Article  CAS  Google Scholar 

  23. Maneghetti P, Qutubuddin S, Webber A (2004) Synthesis of polymer gel electrolyte with high molecular weight poly (methyl methacrylate)-clay nanocomposite. Electrochim Acta 49:4923–4931

    Article  CAS  Google Scholar 

  24. de Picciotto LA, Adendorff KT, Liles DC, Thackeray MM (1993) Structural characterization of Li1+x V3O8 insertion electrodes by single-crystal X-ray diffraction. Solid State Ionics 62:297–307

    Article  Google Scholar 

  25. Liu Y-J, Schindler JL, DeGroot DC, Kannewurf CR, Hirpo W, Kanatzidis MG (1996) Synthesis, structure, and reactions of poly(ethylene oxide)/V2O5 intercalative nanocomposites. Chem Mater 8:525–534

    Article  CAS  Google Scholar 

  26. Kanatzidis MG, Wu C-G, Mercy HO, Kannewurf C (1989) Conductive-polymer bronzes. Intercalated polyaniline in vanadium oxide xerogels. J Am Chem Soc 111:4139–4141

    Article  CAS  Google Scholar 

  27. Jiao L, Li H, Yuan H, Wang Y (2008) Preparation of copper-doped LiV3O8 composite by a simple addition of the doping metal as cathode materials for lithium-ion batteries. Mater Lett 62:3937–3939

    Article  CAS  Google Scholar 

  28. Ding Y, Gui Z, Zhu J, Hu Y, Wang Z (2009) Exfoliated poly(methyl methacrylate)/MgFe-layered double hydroxide nanocomposites with small inorganic loading and enhanced properties. Mater Res Bull 43:3212–3220

    Article  CAS  Google Scholar 

  29. Li L, Yan Z (2005) Synthesis and characterization of self-assembled V2O5 mesostructures intercalated by polyaniline. J Nat Gas Chem 14:35–39

    Google Scholar 

  30. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to spectroscopy, 3rd edn. Harcourt College Publ, USA

    Google Scholar 

  31. Kim CS, Oh SM (2000) Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim Acta 45:2101–2109

    Article  CAS  Google Scholar 

  32. Rajendran S, Mahendran O, Kannan R (2002) Ionic conductivity studies in composite solid polymer electrolytes based on methylmethacrylate. J Phys Chem Solids 63:303–307

    Article  CAS  Google Scholar 

  33. Yang G, Hou W, Sun Z, Yan Q (2005) A novel inorganic–organic polymer electrolyte with a high conductivity: insertion of poly(ethylene) oxide into LiV3O8 in one step. J Mater Chem 15:1369–1374

    Article  CAS  Google Scholar 

  34. Saikia D, Kumar A (2005) Ionic transport in P(VDF-HFP)-PMMA-LiCF3SO3-(PC+DEC)-SiO2 composite gel polymer electrolyte. Eur Polym J 41:563–568

    Article  CAS  Google Scholar 

  35. de Picciotto LA, Adendorff KT, Liles DC, Thackeray MM (1993) Structural characterization of Li1+x V3O8 insertion electrodes by single-crystal X-ray diffraction. Solid State Ion 62:297–307

    Article  Google Scholar 

  36. Aravindan V, Vickraman P (2008) Characaterization of SiO2 and Al2O3 incorporated PVdF-HFP based composite polymer electrolytes with LiPF3(CF3CF2)3. J Appl Polym Sci 108:1314

    Article  CAS  Google Scholar 

  37. Appetecchi G, Croce F, Scrosati B (1995) Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 40:991–997

    Article  CAS  Google Scholar 

  38. Hayamizu K, Aihara Y, Arai S, Martinez CG (1999) Pulse-gradient spin-echo 1H, 7Li, and 19F NMR diffusion and ionic conductivity measurements of 14 organic electrolytes containing LiN(SO2CF3)2. J Phys Chem B 103:519–524

    Article  CAS  Google Scholar 

  39. Manoratne CH, Rajapakse RMG, Dissanayake MAKL (2006) Ionic conductivity of poly(ethylene oxide) PEO-Montmorillonite (MMT) nanocomposited prepared by intercalation from aqueous medium. Int J Electrochem Sci 1:32–46

    CAS  Google Scholar 

  40. Croce F, Scrosati B (1993) Interfacial phenomena in polymer-electrolyte cells: lithium passivation and cycleability. J Power Sources 43:9–19

    Article  CAS  Google Scholar 

  41. Stephan AM, Nahm KS, Kulandainathan MA, Ravi G, Wilson J (2006) Poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) based composite electrolytes for lithium batteries. Eur Polym J 42:1728–1734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr. Ratan Barua, Department of Physics, Tezpur University for extending help in taking SEM

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deka, M., Kumar, A. Enhanced ionic conductivity in novel nanocomposite gel polymer electrolyte based on intercalation of PMMA into layered LiV3O8 . J Solid State Electrochem 14, 1649–1656 (2010). https://doi.org/10.1007/s10008-009-0998-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0998-8

Keywords

Navigation