Skip to main content

Advertisement

Log in

Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats

  • Original Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Purpose

The installation of implants has become a routine procedure in the clinic. However, it takes time and adequate bone thickness, and for that, tissue engineering has made efforts to develop substitutes for autografts, in view of certain disadvantages of this material. The decision to choose the most suitable graft material for each case is an important step in the success of bone reconstruction. This study was to verify, by means of immunohistochemical study, that the addition of bone morphogenetic protein had some influence on biomaterials commercially available, taking into account the formation of mineralized tissue, bone replacement, and the amount of degradation of biomaterials.

Methods

The sample consisted of 72 rats that were divided into eight treatment groups, in which two defects of 5 mm were made in each animal calvaria. Euthanasia was performed at 5, 15, and 30 days postop.

Results

A histologic and histometric analysis was performed to quantitate the area of mineralized tissue formed, the area of newly formed bone, and the area of degradation of the biomaterials. Data were analyzed with multiple comparisons of means by Tukey contrasts, and significant difference was assigned at the level of P < 0.05. The proteins used for immunohistochemical analysis accounted for the process of formation, mineralization, and bone resorption and was performed using ordinal qualitative analysis, where from assigning scores.

Conclusions

Bone morphogenetic protein 2 was shown to be effective as an inducer of bone formation process independent biomaterial used mainly for accelerating the resorption process of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Leventis MD, Fairbaim P, Dontas I, Faratzis G, Valavanis KD, Khaldi L, Kostakis G, Eleftheriadis E (2014) Biological response to beta-tricalcium phosphate/calcium sulfate synthetic graft material: an experimental study. Implant Dent 23:37–43

    Article  PubMed  Google Scholar 

  2. Mangano C, Piattelli A, Mangano A, Mangano F, Mangano A, Iezzi G, Borges FL, D’avila S, Shibli JÁ (2009) Combining scaffolds and osteogenic cells in regenerative bone surgery: a preliminary histological report in human maxillary sinus augmentation. Clin Implant Dent Relat Res 11(Suppl 1):e92–102

    Article  PubMed  Google Scholar 

  3. De Lange GL, Overman JR, Farré-Guasch E, Korstjens CM, Hartman B, Langenbach GE, Van Duin MA, Klein-Nulend J (2014) A histomorphometric and micro-computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split mouth model. Oral Surg Oral Med Oral Pathol Oral Radiol 117:8–22

    Article  PubMed  Google Scholar 

  4. Kurkcu M, Benlidayi ME, Cam B, Sertdemir Y (2012) Anorganic bovine-derived hydroxyapatite vs beta-tricalcium phosphate in sinus augmentation: a comparative histomorphometric study. J Oral Implantol 38:519–526

    Article  PubMed  Google Scholar 

  5. Liu T, Wu G, Wismeijer D, Gu Z, Liu Y (2013) Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 56:110–118

    Article  CAS  PubMed  Google Scholar 

  6. Schmitt C, Lutz R, Doering H, Lell M, Ratky J, Schlegel KA (2013) Bio-Oss® blocks combined with BMP-2 and VEGF for the regeneration of bony defects and vertical augmentation. Clin Oral Implants Res 24:450–460

    Article  PubMed  Google Scholar 

  7. Eldesoqi K, Henrich D, El-Kady AM, Arbid MS, Abd El-Hady BM, Marzi I, Seebach C (2014) Safety evaluation of a bioglass-polylactic acid composite scaffold seeded with progenitor cells in a rat skull critical-size bone defect. PLoS One 9:e87642

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chaves MD, Nunes LSS, De Oliveira RV, Holgado LA, Filho HN, Matsumoto MA, Ribeiro DA (2012) Bovine hydroxyapatite (Bio-Oss®) induces osteocalcin, RANK-L and osteoprotegerin expression in sinus lift of rabbits. J Craniomaxillofac Surg 40:e315–e320

    Article  PubMed  Google Scholar 

  9. Luvizuto ER, Tangl S, Zanoni G, Okamoto T, Sonoda CK, Gruber R, Okamoto R (2011) The effect of BMP-2 on the osteoconductive properties of beta-tricalcium phosphate in rat calvaria defects. Biomaterials 32:3855–3861

    Article  CAS  PubMed  Google Scholar 

  10. Luvizuto ER, Queiroz TP, Margonar R, Panzarini SR, Hochuli-Vieira E, Okamoto T, Okamoto R (2012) Osteoconductive properties of beta-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in bone defects. J Craniofac Surg 23:e430–e433

    Article  PubMed  Google Scholar 

  11. Liu Y, Wu G, De Groot K (2010) Biomimetic coatings for bone tissue engineering of critical-sized defects. J R Soc Interface 7(Suppl 5):S631–S647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hollinger JO, Kleinschmidt JC (1990) The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1:60–68

    Article  CAS  PubMed  Google Scholar 

  13. Notodihardjo FZ, Kakudo N, Kushida S, Suzuki K, Kusumoto K (2012) Bone regeneration with BMP-2 and hydroxyapatite in critical-size calvarial defects in rats. J Craniomaxillofac Surg 40:287–291

    Article  PubMed  Google Scholar 

  14. Seebach C, Henrich D, Wilhelm K, Barker JH, Marzi I (2012) Endothelial progenitor cells improve directly and indirectly early vascularization of mesenchymal stem cell-driven bone regeneration in a critical bone defect in rats. Cell Transplant 21:1667–1677

    Article  CAS  PubMed  Google Scholar 

  15. Jones L, Thomsen JS, Mosekilde L, Bosch C, Melsen B (2007) Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances. J Craniomaxillofac Surg 35:350–357

    Article  PubMed  Google Scholar 

  16. Dupoirieux L, Pohl J, Hanke M, Pourquier D (2009) A preliminary report on the effect of dimeric rhGDF-5 and its monomeric form rhGDF-5C465A on bone healing of rat cranial defects. J Craniomaxillofac Surg 37:30–35

    Article  PubMed  Google Scholar 

  17. Giavaresi G, Fini M, Salvage J, Nicoli Aldini N, Giardino R, Ambrosio L, Nicolais L, Santin M (2010) Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects. J Mater Sci Mater Med 21:615–626

    Article  CAS  PubMed  Google Scholar 

  18. Gu Y, Huang W, Rahaman M, Day DE (2012) Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses. Acta Biomater 9:9126–9136

    Article  Google Scholar 

  19. Kawakatsu N, Oda S, Kinoshita A, Kikuchi S, Tsuchioka H, Akizuki T, Hayashi C, Kokubo S, Ishikawa I, Izumi Y (2008) Effect of rhBMP-2 with PLGA/gelatin sponge type (PGS) carrier on alveolar ridge augmentation in dogs. J Oral Rehabil 35:647–655

    Article  CAS  PubMed  Google Scholar 

  20. Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH (2014) Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits. J Biomed Mater Res B Appl Biomater 102:80–88

    Article  PubMed  Google Scholar 

  21. Shih TC, Teng NC, Wang PD, Lin CT, Yang JC, Fong SW, Lin HK, Chang WJ (2013) In vivo evaluation of resorbable bone graft substitutes in beagles: histological properties. J Biomed Mater Res A 101:2405–2411

    Article  PubMed  Google Scholar 

  22. Del Real RP, Wolke JCG, Vallet-Ragí M, Jansen JA (2002) A new method to produce macropores in calcium phosphate cements. Biomaterials 23:3673

    Article  CAS  PubMed  Google Scholar 

  23. Knaack D, Goad MEP, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD (1998) Resorbable calcium phosphate bone substitute. J Biomed Mater Res 43:399–409

    Article  CAS  PubMed  Google Scholar 

  24. Fulmer MT, Ison IC, Hankermayer CR, Constantz BR, Ross J (2002) Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials 23:751–755

    Article  CAS  PubMed  Google Scholar 

  25. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  PubMed  Google Scholar 

  26. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jérôme R (2004) Porous poly (alpha-hydroxyacid) / Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Biomaterials 25:4185–4194

    Article  CAS  PubMed  Google Scholar 

  27. Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly (L-lactide)/bioactive glass composites. Biomaterials 25:2489–2500

    Article  CAS  PubMed  Google Scholar 

  28. Serino G, Biancu S, Iezzi G, Piattelli A (2003) Ridge preservation following tooth extraction using a polylactide and polyglycolide sponge as space filler: a clinical and histological study in humans. Clin Oral Implants Res 14:651–658

    Article  PubMed  Google Scholar 

  29. Barbanti SH, Santos AR, Zavaglia CA, Duek EA (2004) Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture. J Mater Sci Mater Med 15:1315–1321

    Article  CAS  PubMed  Google Scholar 

  30. Habraken WJ, Wolke JG, Mikos AG, Jansen JA (2006) Injectable PLGA microsphere/calcium phosphate cements: physical properties and degradation characteristics. J Biomater Sci Polym Ed 17:1057–1074

    Article  CAS  PubMed  Google Scholar 

  31. Hedberg EL, Kroese-Deutman HC, Shih CK, Crowther RS, Carney DH, Mikos AG, Jansen JA (2005) In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds. Biomaterials 26:4616–4623

    Article  CAS  PubMed  Google Scholar 

  32. Lee JH, Ryu MY, Baek HR, Lee KM, Seo JH, Lee HK, Ryu HS (2013) Effects of porous beta-tricalcium phosphate-based ceramics used as an E. coli-derived rhBMP-2 carrier for bone regeneration. J Mater Sci Mater Med 24:2117–2127

    Article  CAS  PubMed  Google Scholar 

  33. Marques L, Holgado LA, Francischone LA, Ximenez JP, Okamoto R, Kinoshita A (2014) New LLLT protocol to speed up the bone healing process-histometric and immunohistochemical analysis in rat calvarial bone defect. Lasers Med Sci 30:1225–1230

    Article  PubMed  Google Scholar 

  34. Shen J, Li Y, Zuo Y, Zou Q, Cheng L, Zhang L, Gong M, Gao S (2010) Characterization and cytocompatibility of biphasic calcium phosphate/polyamide 6 scaffolds for bone regeneration. J Biomed Mater Res B Appl Biomater 95:330–338

    Article  PubMed  Google Scholar 

  35. Shirasu N, Ueno T, Hirata Y, Hirata A, Kagawa T, Kanou M, Sawaki M, Wakimoto M, Ota A, Imura H, Matsumura T, Yamada T, Yamachika E, Sano K (2010) Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate. Acta Histochem 112:270–277

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio César da Silva de Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding source

This work was supported by the Fundo de Amparo à Pesquisa do Estado de São Paulo (FAPESP) no. 2008/10516-6.

Human rights statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva de Oliveira, J.C., Luvizuto, E.R., Sonoda, C.K. et al. Immunohistochemistry evaluation of BMP-2 with β-tricalcium phosphate matrix, polylactic and polyglycolic acid gel, and calcium phosphate cement in rats. Oral Maxillofac Surg 21, 247–258 (2017). https://doi.org/10.1007/s10006-017-0624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-017-0624-3

Keywords

Navigation