Skip to main content

Advertisement

Log in

Distraction histogenesis of the maxillofacial region

  • Review Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

The changes in the surrounding soft tissues during long bone distraction in orthopedic surgery have been the subject of several reports, studies on changes in the craniofacial region, in which various tissues, including the skin, muscle, tendon, blood vessel, and gingiva are rare. Therefore, there is a need for studies on the soft tissue aspects of bone lengthening of the craniofacial region. The aim of this review was to address this issue by reviewing the literature about the distraction histogenesis of various tissues, including skin, muscle, blood vessel, nerve, and gingiva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apaydin A, Yazdirduyev B, Can T, Keklikoglu N (2011) Soft tissue changes during distraction osteogenesis. Int J Oral Maxillofac Surg 40(4):408–412

    Article  CAS  PubMed  Google Scholar 

  2. Carlson DS, Ellis E III, Dechow PC (1987) Adaptation of the suprahyoid muscle complex to mandibular advancement surgery. Am J Orthod Dentofac Orthop 92:134–143

    Article  CAS  Google Scholar 

  3. Altug-Atac AT, Grayson BH, McCarthy JG (2008) Comparison of skeletal and soft-tissue changes following unilateral mandibular distraction osteogenesis. Plast Reconstr Surg 121:1751–1759

    CAS  PubMed  Google Scholar 

  4. Codivilla A (1994) On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. Clin Orthop Relat Res 301:4–9

    PubMed  Google Scholar 

  5. Enislidis G, Fock N, Millesi-Schobel G, Klug C, Wittwer G, Yerit K, Ewers R (2005) Analysis of complications following alveolar distraction osteogenesis and implant placement in the partially edentulous mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100:25–30

    Article  PubMed  Google Scholar 

  6. Altuğ HA, Aydintuğ YS, Şençimen M, Günhan O, Ortakoğlu K, Bayar GR, Doğan N (2011) Histomorphometric analysis of different latency periods effect on new bone obtained by periosteal distraction: an experimental study in the rabbit model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 111(5):539–546

    Article  PubMed  Google Scholar 

  7. Karacay S, Akin E, Okçu KM, Bengi AO, Altug HA (2005) Mandibular distraction with MD-DOS device. Angle Orthod 75:685–693

    PubMed  Google Scholar 

  8. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop 239:263–285

    PubMed  Google Scholar 

  9. Ilizarov GA (1992) The transosseous osteosynthesis: theoretical and clinical aspects of the regeneration and growth of tissue. Springer, New York

    Book  Google Scholar 

  10. Peltomäki T (2009) Stability, adaptation and growth following distraction osteogenesis in the craniofacial region. Orthod Craniofacial Res 12:187–194

    Article  Google Scholar 

  11. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 238:249–281

    PubMed  Google Scholar 

  12. Castaño FJ, Troulis MJ, Glowacki J, Kaban LB, Yates KE (2001) Proliferation of masseter myocytes after distraction osteogenesis of the porcine mandible. J Oral Maxillofac Surg 59:302–307

    Article  PubMed  Google Scholar 

  13. Molina F, Ortiz MF (1995) Mandibular elongation and remodeling by distraction: a farewell to major osteotomies. Plast Reconstr Surg 96:825–840

    Article  CAS  PubMed  Google Scholar 

  14. Sato M, Maruoka Y, Kunimori K, Imai H, Kabasawa Y, Ichinose S, Harada K, Omura K (2007) Morphological and immunohistochemical changes in muscle tissue in association with mandibular distraction osteogenesis. J Oral Maxillofac Surg 65:1517–1525

    Article  PubMed  Google Scholar 

  15. Carmichael KD, Maxwell SC, Calhoun JH (2005) Recurrence rates of burn contracture ankle equinus and other foot deformities in children treated with Ilizarov fixation. J Pediatr Orthop 25:523–528

    Article  PubMed  Google Scholar 

  16. Bar-Meir E, Yaffe B, Winkler E, Sher N, Berenstein M, Schindler A (2006) Combined Iliazarov and free flap for severe recurrent flexion-contracture release. J Burn Care Res 27:529–534

    Article  PubMed  Google Scholar 

  17. Hiraki S, Nakamura I, Okazaki H, Nakamura K, Kurokawa T (2006) Skin behavior during leg lengthening in patients with achondroplasia and hypochondroplasia: a short-term observation during leg lengthening. J Orthop Sci 11:267–271

    Article  PubMed  Google Scholar 

  18. Saghieh S, El Bitar Y, Berjawi G, Harfouche B, Atiyeh B (2011) Distraction histogenesis in ankle burn deformities. J Burn Care Res 32:160–165

    Article  PubMed  Google Scholar 

  19. Chang H, Kwon ST, Chung CY, Choi IH, Ahn HT, Cho KH (2007) Changes in skin during distraction osteogenesis of the tibia in Sprague-Dawley rats: verification of epidermal proliferation by immunohistochemical methods. Scand J Plast Reconstr Surg Hand Surg 41:97–102

    Article  PubMed  Google Scholar 

  20. Rikimaru H, Kiyokawa K, Watanabe K, Koga N, Nishi Y (2010) A new therapeutic strategy for lengthening severe short nose. J Craniofac Surg 21:495–498

    Article  PubMed  Google Scholar 

  21. Elsalanty ME, Taher TN, Zakhary IE, Al-Shahaat OA, Refai M, El-Mekkawi HA (2007) Reconstruction of large mandibular bone and soft-tissue defect using bone transport distraction osteogenesis. J Craniofac Surg 18:1397–1402

    Article  PubMed  Google Scholar 

  22. Aronson J, Shen XC, Gao GG, Miller F, Quattlebaum T, Skinner RA, Badger TM, Lumpkin CK Jr (1997) Sustained proliferation accompanies distraction osteogenesis in the rat. J Orthop Res 15:563–569

    Article  CAS  PubMed  Google Scholar 

  23. Hu J, Zou S, Li J, Chen Y, Wang D, Gao Z (2003) Temporospatial expression of vascular endothelial growth factor and basic fibroblast growth factor during mandibular distraction osteogenesis. J Craniomaxillofac Surg 31:238–243

    Article  PubMed  Google Scholar 

  24. Nissen NN, Polverini PJ, Gamelli RL, DiPietro LA (1996) Basic fibroblast growth factor mediates angiogenic activity in early surgical wounds. Surgery 119(4):457–465

    Article  CAS  PubMed  Google Scholar 

  25. Nissen NN, Polverini PJ, Koch AE, Volin MV, Gamelli RL, DiPietro LA (1998) Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. Am J Pathol 152(6):1445–1452

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Aronson J (1994) Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 301:124–131

    PubMed  Google Scholar 

  27. Pacicca DM, Patel N, Lee C, Salisbury K, Lehmann W, Carvalho R, Gerstenfeld LC, Einhorn TA (2003) Expression of angiogenic factors during distraction osteogenesis. Bone 33:889–898

    Article  CAS  PubMed  Google Scholar 

  28. Rowe NM, Mehrara BJ, Luchs JS, Dudsziak ME, Steinbrech DS, Illei PB et al (1999) Angiogenesis during mandibular distraction. Ann Plast Surg 42:470–475

    Article  CAS  PubMed  Google Scholar 

  29. Lindeboom JA, Mathura KR, Milstein DM, Ince C (2008) Microvascular soft tissue changes in alveolar distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106:350–355

    Article  PubMed  Google Scholar 

  30. Glowacki J (1998) Angiogenesis in fracture repair. Clin Orthop Relat Res. (355 Suppl):S82-9

  31. Mosheiff R, Cordey J, Rahn BA, Perren SM, Stein H (1996) The vascular supply to bone in distraction osteogenesis: an experimental study. J Bone Joint Surg Br 78:497–498

    CAS  PubMed  Google Scholar 

  32. Warren SM, Mehrara BJ, Steinbrech DS, Paccione MF, Greenwald JA, Spector JA, Longaker MT (2001) Rat mandibular distraction osteogenesis: part III. Gradual distraction versus acute lengthening. Plast Recontr Surg 107:441–453

    Article  CAS  Google Scholar 

  33. Byun JH, Park BW, Kim JR, Lee JH (2007) Expression of vascular endothelial growth factor and its receptors after mandibular distraction osteogenesis. Int J Oral Maxillofac Surg 36:338–344

    Article  PubMed  Google Scholar 

  34. Shevtsov VI, Gordievskikh NI, Bunov VS, Petrovskaya NV (2002) Changes in blood flow during tibial thickening by the Ilizarov method. Bull Exp Biol Med 134:525–527

    Article  CAS  PubMed  Google Scholar 

  35. Hansen-Algenstaedt N, Algenstaedt P, Böttcher A, Joscheck C, Schwarzloh B, Schaefer C et al (2003) Bilaterally increased VEGF levels in muscles during experimental unilateral callus distraction. J Orthop Res 21:805–812

    Article  CAS  PubMed  Google Scholar 

  36. Hausman MR, Schaffler MB, Majeska RJ (2001) Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone 29:560–564

    Article  CAS  PubMed  Google Scholar 

  37. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99(15):9656–9661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Fink B, Singer J, Braunstein S, Schwinger G, Schmielau G, Ruther W (1999) Behavior of blood vessels during lower-leg lengthening using Ilizarov method. J Pediatr Orthop 19:748–753

    CAS  PubMed  Google Scholar 

  39. Moore DC, Leblanc CW, Müller R, Crisco JJ, Ehrlich MG (2003) Physiologic weight-bearing increases new vessel formation during distraction osteogenesis: a micro-tomographic imaging study. J Orthop Res 21:489–496

    Article  PubMed  Google Scholar 

  40. Ganey TM, Klotch DW, Slater-Haase AS, Sasse J (1994) Evaluation of distraction osteogenesis by scanning electron microscopy. Otolaryngol Head Neck Surg 111:265–272

    Article  CAS  PubMed  Google Scholar 

  41. Ganey TM, Klotch DW, Sasse J, Ogden JA, Garcia T (1994) Basement membrane of blood vessels during distraction osteogenesis. Clin Orthop 301:132–138

    PubMed  Google Scholar 

  42. Kim MK, Kwon ST, Chang H, Minn KW, Cho TJ, Choi IH (2008) Distraction histogenesis of an anastomosed artery. Injury 39:719–724

    Article  PubMed  Google Scholar 

  43. Skoulis TG, Verkis MD, Terzis JK (1998) Effect of distraction osteogenesis on the peripheral nerve: experimental study in the rat. J Reconstr Microsurg 14:565–574

    Article  CAS  PubMed  Google Scholar 

  44. Makarov MR, Harper RP, Cope JB, Samchukov ML (1998) Evaluation of inferior alveolar nerve function during distraction osteogenesis in the dog. J Oral Maxillofac Surg 56:1417–1423

    Article  CAS  PubMed  Google Scholar 

  45. Michieli S, Miotti B (1977) Lengthening of mandibular body by gradual surgical-orthodontic distraction. J Oral Surg 35:187–192

    CAS  PubMed  Google Scholar 

  46. Klein C, Howaldt HP (1995) Lengthening of the hypoplastic mandible by gradual distraction in childhood: a preliminary report. J Craniomaxillofac Surg 23:68–74

    Article  CAS  PubMed  Google Scholar 

  47. Takato T, Harii K, Hirabayashi S, Komuro Y, Yonehara Y, Susami T (1993) Mandibular lengthening by gradual distraction: analysis using accurate skull replicas. Br J Plast Surg 46:686–693

    Article  CAS  PubMed  Google Scholar 

  48. Lee DY, Han TR, Choi IH, Lee CK, Chung SS (1992) Changes in somatosensory evoked potentials in limb lengthening: an experimental study on rabbits’ tibiae. Clin Orthop 285:273–279

    PubMed  Google Scholar 

  49. Makarov MR, Birch JG, Delgado MR, Welch RD, Samchukov ML (1996) Effects of external fixation and limb lengthening on peripheral nerve function. Clin Orthop 329:310–316

    Article  PubMed  Google Scholar 

  50. Karp NS, Thorne CH, McCarthy JG, Sissons HA (1990) Bone lengthening in the craniofacial skeleton. Ann Plast Surg 24:231–237

    Article  CAS  PubMed  Google Scholar 

  51. Wang XX, Wang X, Li ZL (2002) Effects of mandibular distraction osteogenesis on the inferior alveolar nerve: an experimental study in monkeys. Plast Reconstr Surg 109:2373–2383

    Article  PubMed  Google Scholar 

  52. Meyer M, Matsuoka I, Wetmore C, Olson L, Thoenen H (1992) (1992) Enhanced synthesis of brain derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol 119:45–54

    Article  CAS  PubMed  Google Scholar 

  53. Anthony C, DiStefano PS (1998) Neurotrophin trafficking by anterograde transport. Trends Neurosci 21:433–437

    Article  Google Scholar 

  54. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  55. Hu J, Zou S, Tang Z, Wang D, Li J, Gao Z (2003) Response of Schwann cells in the inferior alveolar nerve to distraction osteogenesis: an ultrastructural and immunohistochemical study. Int J Oral Maxillofac Surg 32:318–324

    Article  CAS  PubMed  Google Scholar 

  56. Park BW, Kim JR, Lee JH, Byun JH (2006) Expression of nerve growth factor and vascular endothelial growth factor in the inferior alveolar nerve after distraction osteogenesis. Int J Oral Maxillofac Surg 35:624–630

    Article  PubMed  Google Scholar 

  57. Farhadieh RD, Nicklin S, Yu Y, Gianoutsos MP, Walsh WR (2003) The role of nerve growth factor and brain-derived neurotrophic factor in inferior alveolar nerve regeneration in distraction osteogenesis. J Craniofac Surg 14:859–865

    Article  PubMed  Google Scholar 

  58. Donato R (1991) Perspectives in S-100 protein biology. Review article. Cell Calcium 12:713–726

    Article  CAS  PubMed  Google Scholar 

  59. Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18:397–405

    Article  CAS  PubMed  Google Scholar 

  60. Hu J, Tang Z, Wang D, Buckley MJ (2000) Changes in the inferior alveolar nerve after mandibular lengthening with different rates of distraction. J Oral Maxillofac Surg 59:1041–1045

    Article  Google Scholar 

  61. Rosenstein JM, Krum JM (2004) New roles for VEGF in nervous tissue—beyond blood vessels. Exp Neurol 187:246–253

    Article  CAS  PubMed  Google Scholar 

  62. Sondell M, Lundborg G, Kanje M (1999) Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 19:5731–5740

    CAS  PubMed  Google Scholar 

  63. Wells L, Edwards KA, Bernstein SI (1996) Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. EMBO J 15:4454–4459

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Ianuzzo D, Patel P, Chen V, O’Brien P, Williams C (1977) Thyroidal trophic influence on skeletal muscle myosin. Nature 270(5632):74–76

    Article  CAS  PubMed  Google Scholar 

  65. Pette D, Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol 120:115–202

    Article  CAS  PubMed  Google Scholar 

  66. Komi PV, Viitasalo JH, Havu M, Thorstensson A, Sjödin B, Karlsson J (1977) Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol Scand 100:385–392

    CAS  PubMed  Google Scholar 

  67. Nakamura T, Masui S, Wada M, Katoh H, Mikami H, Katsuta S (1993) Heredity of muscle fibre composition estimated from a selection experiment in rats. Eur J Appl Physiol Occup Physiol 66:85–89

    Article  CAS  PubMed  Google Scholar 

  68. Suwa M, Nakamura T, Katsuta S (1996) Heredity of muscle fiber composition and correlated response of the synergistic muscle in rats. Am J Physiol 27:R432–R436

    Google Scholar 

  69. Nimmo MA, Wilson RH, Snow DH (1985) The inheritance of skeletal muscle fibre composition in mice. Comp Biochem Physiol A Comp Physiol 81:109–115

    Article  CAS  PubMed  Google Scholar 

  70. Ilizarov GA (1990) Clinical application at the tension-stress effect for limb lengthening. Clin Orthop 250:8–17

    PubMed  Google Scholar 

  71. Ilizarov GA, Ledyaev VI (1992) The replacement of tubular bone defects by lengthening distraction osteotomy of the fragments. Clin Orthop 280:7–14

    PubMed  Google Scholar 

  72. Fisher E, Staffenberg DA, McCarthy JG, Miller DC, Zeng J (1997) Histopathologic and biochemical changes in the muscles affected by distraction osteogenesis of the mandible. Plast Reconstr Surg 99:366–371

    Article  CAS  PubMed  Google Scholar 

  73. Simpson AH, Williams PE, Kyberd P, Goldspink G, Kenwright J (1995) The response of muscle to leg lengthening. J Bone Joint Surg Br 77:630–636

    CAS  PubMed  Google Scholar 

  74. Ellis E 3rd, Carlson DS (1983) Stability two years after mandibular advancement with and without suprahyoid myotomy: an experimental study. J Oral Maxillofac Surg 41:426–437

    Article  PubMed  Google Scholar 

  75. Troulis MJ, Glowacki J, Perrott DH, Kaban LB (2000) Effects of latency and rate on bone formation in a porcine mandibular distraction model. J Oral Maxillofac Surg 58:507–513, discussion 514

    Article  CAS  PubMed  Google Scholar 

  76. Kruse-Lösler B, Flören C, Stratmann U, Joos U, Meyer U (2005) Histologic, histomorphometric and immunohistologic changes of the gingival tissues immediately following mandibular osteodistraction. J Clin Periodontol 32:98–103

    Article  PubMed  Google Scholar 

  77. Cope JB, Samchukov ML (2000) Regenerate bone formation and remodeling during mandibular osteodistraction. Angle Orthod 70:99–111

    CAS  PubMed  Google Scholar 

  78. Chin M, Toth BA (1996) Distraction osteogenesis in maxillofacial surgery using internal devices: review of five cases. J Oral Maxillofac Surg 54:45–54

    Article  CAS  PubMed  Google Scholar 

  79. Ortakoglu K, Suer BT, Ozyigit A, Ozen T, Sencimen M (2006) Vertical distraction osteogenesis of fibula transplant for mandibular reconstruction: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:e8–e11

    Article  PubMed  Google Scholar 

  80. Shevtsov VI, Asonova SN, Yerofeyev SA (1995) Morphological characteristics of angiogenesis in the myofascial tissues of a limb elongated by the Ilizarov method. Bull Hosp Jt Dis 54:76–84

    CAS  PubMed  Google Scholar 

  81. Makarov MR, Kochutina LN, Samchukov ML, Birch JG, Welch RD (2001) Effect of rhythm and level of distraction on muscle structure: an animal study. Clin Orthop Relat Res 384:250–264

    Article  PubMed  Google Scholar 

  82. Ten Cate AR (1998) Repair and regeneration of dental tissues. In: Ten Cate AR (ed) Oral histology: development, structure, and function. Mosby, St Louis, pp 408–423

    Google Scholar 

  83. Cope JB, Samchukov ML, Muirhead DE (2002) Distraction osteogenesis and histogenesis in beagle dogs: the effect of gradual mandibular osteodistraction on bone and gingiva. J Periodontol 73:271–282

    Article  PubMed  Google Scholar 

  84. Kunimori K, Maruoka Y, Sato M, Harada K, Omura K (2007) The effect of mandibular distraction osteogenesis on the histology and immunohistology of keratinized gingiva. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103:738–744

    Article  PubMed  Google Scholar 

  85. Okcu KM, Sencimen M, Karacay S, Bengi AO, Ors F, Dogan N, Gokce HS (2009) Anterior segmental distraction of the hypoplastic maxilla by a tooth borne device: a study on the movement of the segment. Int J Oral Maxillofac Surg 38:817–822

    Article  CAS  PubMed  Google Scholar 

  86. Sencimen M, Aydintug YS, Ortakoglu K, Karslioglu Y, Gunhan O, Gunaydin Y (2007) Histomorphometrical analysis of new bone obtained by distraction osteogenesis and osteogenesis by periosteal distraction in rabbits. Int J Oral Maxillofac Surg 36:235–242

    Article  CAS  PubMed  Google Scholar 

  87. Carroll NC, Grant CG, Hudson R, Gilbert J, Mubarak SJ, Warren R (1981) Experimental observations on the effects of leg lengthening by theWagner method. Clin Orthop Relat Res 7:250–257

    Google Scholar 

  88. Chin M, Toth BA (1997) LeFort III advancement with gradual distraction using internal devices. Plast Reconstr Surg 100:819–830

    Article  CAS  PubMed  Google Scholar 

  89. Choi IH, Ahn JH, Chung CY, Cho TJ (2000) Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J Orthop Res 18:698–705

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydin Gülses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülses, A., Sencimen, M., Ayna, M. et al. Distraction histogenesis of the maxillofacial region. Oral Maxillofac Surg 19, 221–228 (2015). https://doi.org/10.1007/s10006-015-0495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-015-0495-4

Keywords

Navigation