Skip to main content
Log in

Theoretical insight into the BH3·HCN adsorption on the Co(100) and Co(110) surfaces as hydrogen storage

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Fifteen configurations and adsorption energies of the adsorption sites of BH3∙∙∙HCN on Co(100) and Co(110) surfaces were investigated using the density functional theory. The results show that after BH3∙∙∙HCN is adsorbed, although there is no general behavior for the H∙∙∙H distances, the adsorption energies of BH3∙∙∙HCN are always far stronger than those of H2 on Co surfaces, suggesting that the dihydrogen-bonded complex, one kind of prospective material for reversible hydrogen storage, can be tightly adsorbed on the surfaces of metals. Thus, the attempts to store the significant amounts of H2 can be successful by the way that the dihydrogen-bonded complexes are adsorbed on the surfaces of metals. The stability and binding mechanism was analyzed by the Mulliken charge population and reduced density gradients (RDGs) methods.

BH3···HCN adsorption on Co surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brown CM, Ramirez-Cuesta AJ, Her J-H, Wheatley PS, Morris RE (2013) Structure and spectroscopy of hydrogen adsorbed in a nickel metal–organic framework. Chem Phys 427:3–8

    Article  CAS  Google Scholar 

  2. Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126:5666–5667

    Article  CAS  Google Scholar 

  3. Collins DJ, Zhou H-C (2007) Hydrogen storage in metal–organic frameworks. J Mater Chem 17:3154–3160

    Article  CAS  Google Scholar 

  4. Murray LJ, Dincä M, Long JR (2009) Hydrogen storage in metal–organic frameworks. Chem Soc Rev 38:1294–1314

    Article  CAS  Google Scholar 

  5. Yang J, Sudik A, Wolverton C, Siegel DJ (2010) High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem Soc Rev 39:656–675

    Article  CAS  Google Scholar 

  6. Peter AG, Alberto A, Juergen E (2007) Room temperature isosteric heat of dihydrogen adsorptionon Cu(I) cations in zeolite ZSM-5. Chem Phys Lett 449:182–185

    Article  Google Scholar 

  7. Sun YY, Lee K, Wang L, Kim Y-H, Chen W, Chen Z, Zhang SB (2010) Accuracy of density functional theory methods for weakly bonded systems: the case of dihydrogen binding on metal centers. Phys Rev B 82:073401-1–4

    Google Scholar 

  8. Callear SK, Anibal J, Ramirez-Cuesta AJ, David WIF, Millange F, Walton RI (2013) High-resolution inelastic neutron scattering and neutron powderdiffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1. Chem Phys 427:9–17

    Article  CAS  Google Scholar 

  9. Granja FA, Diez RP (2011) A density functional study of the interaction of dihydrogen with MoN clusters (N = 2-8). Adsorption and dissociation of H2 and cluster reconstruction after desorption. Int J Quantum Chem 111:3201–3211

    Article  CAS  Google Scholar 

  10. Schmitz B, Müller U, Trukhan N, Schubert M (2008) Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 9:2181–2184

    Article  CAS  Google Scholar 

  11. Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130:8386–8396

    Article  CAS  Google Scholar 

  12. Brown CM, Liu Y, Yildirim T, Peterson VK, Kepert CJ (2009) Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principlesstudy. Nanotechnology 20:204025-1–11

    Google Scholar 

  13. Dietzel PDC, Georgiev PA, Eckert J, Blom R, Sträsle T, Unruh T (2010) Interaction of hydrogen with accessible metal sites in the metal–organic frameworks M2(dhtp) (CPO-27-M; M = Ni, Co, Mg). Chem Commun 46:4962–4964

    Article  CAS  Google Scholar 

  14. Palomino GT, Cabello CP, Carlos Otero Areán CO (2011) Enthalpy–entropy correlation for hydrogen adsorption on MOFs: variable-temperature FTIR study of hydrogen adsorption on MIL-100(Cr) and MIL-101(Cr). Eur J Inorg Chem 1703–1708

  15. FitzGerald SA, Allen K, Landerman P, Hopkins J, Matters J, Myers R, Rowsell JLC (2008) Quantum dynamics of adsorbed H2 in the microporous framework MOF-5 analyzed using diffuse reflectance infrared spectroscopy. Phys Rev B 77:224301

    Article  Google Scholar 

  16. Nijem N, Veyan J-F, Kong L, Wu H, Zhao Y, Lic J, Langreth DC, Chabal YJ (2010) Molecular hydrogen “pairing” interaction in a metal organic framework system with unsaturated metal centers (MOF-74). J Am Chem Soc 132:14834–14848

    Article  CAS  Google Scholar 

  17. FitzGerald SA, Burkholder B, Friedman M, Hopkins JB, Pierce CJ, Schloss JM, Thompson B, Rowsell JLC (2011) Metal-specific interactions of H2 adsorbed within isostructural Metal-Organic frameworks. J Am Chem Soc 133:20310–20318

    Article  CAS  Google Scholar 

  18. Zhao Y, Kim YH, Dillon AC, Heben MJ, Zhang SB (2005) Hydrogen storage in novel organometallic buckyballs. Phys Rev Lett 94:155504-1–4

    Google Scholar 

  19. Yildirim T, Ciraci S (2005) Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. Phys Rev Lett 94:175501-1–4

    Article  Google Scholar 

  20. Lee H, Choi WI, Ihm J (2006) Combinatorial search for optimal hydrogen-storage nanomaterials based on polymers. Phys Rev Lett 97:056104-1–4

    Google Scholar 

  21. Durgun E, Ciraci S, Zhou W, Yildirim T (2006) Transition-metal-ethylene complexes as high-capacity hydrogen-storage media. Phys Rev Lett 97:226102-1–4

    Article  Google Scholar 

  22. Yoon M, Yang S, Hicke C, Wang E, Geohegan D, Zhang Z (2008) Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys Rev Lett 100:206806-1–4

    Google Scholar 

  23. Kim Y-H, Sun YY, Zhang SB (2009) Ab initio calculations predicting the existence of an oxidized calcium dihydrogen complex to store molecular hydrogen in densities up to 100 g/L. Phys Rev B 79:115424-1–5

    Google Scholar 

  24. Sun Q, Jena P, Wang Q, Manuel Marquez M (2006) First-principles study of hydrogen storage on Li12C60. J Am Chem Soc 128:9741–9745

    Article  CAS  Google Scholar 

  25. Han SS, Goddard WA (2007) Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J Am Chem Soc 129:8422–8423

    Article  CAS  Google Scholar 

  26. An W, Wu X, Zeng XC (2008) Adsorption of O2, H2, CO, NH3, and NO2 on ZnO nanotube: a density functional theory study. J Phys Chem C 112:5747–5755

    Article  CAS  Google Scholar 

  27. David WIF (2011) Effective hydrogen storage: a strategic chemistry challenge. Faraday Discuss 151:399–414

    Article  CAS  Google Scholar 

  28. Tan Y, Yu X (2013) Chemical regeneration of hydrogen storage materials. RSC Adv 3:23879–23894

    Article  CAS  Google Scholar 

  29. Tang Z, Tan Y, Wu H, Gu Q, Zhou W, Jensen CM, Yu X (2013) Metal cation-promoted hydrogen generation in activated aluminium borohydride ammoniates. Acta Mater 61:4787–4796

    Article  CAS  Google Scholar 

  30. Chen J, He T, Wu G, Xiong Z, Chen P (2013) Synthesis and hydrogen storage properties of lithium borohydride amidoborane complex. Int J Hydrogen Energy 38:10944–10949

    Article  CAS  Google Scholar 

  31. Karkamkar AJ, Aardahl CL, Autrey T (2007) Recent developments on hydrogen release from ammonia borane. Mater Matters 2:6–9

    CAS  Google Scholar 

  32. Tang Z, Yuan F, Gu Q, Tan Y, Chen X, Jensen CM, Yu X (2013) Scandium and vanadium borohydride ammoniates: enhanced dehydrogenation behavior upon coordinative expansion and establishment of Hδ+ · · · −δH interactions. Acta Mater 61:3110–3119

    Article  CAS  Google Scholar 

  33. Wu H, Zhou W, Pinkerton FE, Meyer MS, Srinivas G, Yildirim T, Udovic TJ, Rush JJ (2010) A new family of metal borohydride ammonia borane complexes: synthesis, structures, and hydrogen storage properties. J Mater Chem 20:6550–6556

    Article  CAS  Google Scholar 

  34. Zhang J, Lee J (2012) Progress and prospects in thermolytic dehydrogenation of ammonia borane for mobile applications. Korean J Chem Eng 29:421–431

    Article  CAS  Google Scholar 

  35. Tang Z, Tan Y, Chen X, Ouyang L, Zhu M, Sun D, Yu X (2013) Immobilization of aluminum borohydride hexammoniate in a nanoporous polymer stabilizer for enhanced chemical hydrogen storage. Angew Chem 125:12891–12895

    Article  Google Scholar 

  36. Yang Y, Liu Y, Li Y, Gao M, Pan H (2013) Heating rate-dependent dehydrogenation in the thermal decomposition process of Mg(BH4)2 · 6NH3. J Phys Chem C 117:16326–16335

    Article  CAS  Google Scholar 

  37. Luo J, Wu H, Zhou W, Kang X, Wang P (2013) Li2(NH2BH3)-(BH4)/LiNH2BH3: the first metal amidoborane borohydride complex with inseparable amidoborane precursor for hydrogen storage. Int J Hydrogen Energy 38:197–204

    Article  CAS  Google Scholar 

  38. Planas JG, Viñas C, Teixidor F, Comas-Vives A, Ujaque G, Lledós A, Light ME, Hursthouse MB (2005) Self-Assembly of mercaptane–metallacarborane complexes by an unconventional cooperative effect: A C–H · · · S–H · · · H–B hydrogen/dihydrogen bond interaction. J Am Chem Soc 127:15976–15982

    Article  CAS  Google Scholar 

  39. Wang H, Shi W, Ren F, Ying-xin Tan Y (2016) Does HF prefer to be attached to X or M of XHHM (X = F, Cl, Br; M = Li, Na, K) system? A B3LYP and MP2 theoretical investigation into cooperativity effect. Indian J Chem 55A:769–781

    CAS  Google Scholar 

  40. Yao A, Ren F (2011) A MP2 and CCSD(T) theoretical investigation on the weak dihydrogen-bonded interactions between HB = BH (1Δg) and HM (M = Li, Na, K, BeH, MgH or CaH). Comput Theor Chem 963:463–469

    Article  CAS  Google Scholar 

  41. Yan S, Zou H, Kang W, Sun L (2016) DFT investigation on dihydrogen-bonded amine-borane complexes. J Mol Model 22:17-1–10

    Article  Google Scholar 

  42. Guo YH, Wu H, Zhou W, Yu XB (2011) Dehydrogenation tuning of ammine borohydrides using double-metal cations. J Am Chem Soc 133:4690–4693

    Article  CAS  Google Scholar 

  43. Golub IE, Gulyaeva ES, Filippov OA, Dyadchenko VP, Belkova NV, Epstein LM, Arkhipov DE, Shubina ES (2015) dihydrogen bond intermediated alcoholysis of dimethylamine–borane in nonaqueous media. J Phys Chem A 119:3853–3868

    Article  CAS  Google Scholar 

  44. Hugas D, Guillaumes L, Duran M, Simon S (2012) Delocalization indices for non-covalent interaction: hydrogen and diHydrogen bond. Comput Theor Chem 998:113–119

    Article  CAS  Google Scholar 

  45. Li H, Wu Y, Wan Y, Zhang J, Dai W, Qiao M (2004) Comparative studies on catalytic behaviors of various Co- and Ni-based catalysts during liquid phase acetonitrile hydrogenation. Catal Today 93–95:493–503

    Article  Google Scholar 

  46. Mubarak AA, Hamad BA, Khalifeh JM (2010) The influence of hydrogen on the electronic and magnetic structures of TM(0 0 1) (TM = Fe, Co, Ni, and Cu) surfaces and interfaces: Ab-initio calculations. J Magn Magn Mater 322:780–785

    Article  CAS  Google Scholar 

  47. Feltes TE, Espinosa-Alonso L, de Smit E, D’Souza L, Meyer RJ, Weckhuysen BM, Regalbuto JR (2010) Selective adsorption of manganese onto cobalt for optimized Mn/Co/TiO2 Fischer-Tropsch Catalysts. J Catal 270:95–102

    Article  CAS  Google Scholar 

  48. Oliva C, van den Berg C, Niemanstverdriet JW, Curulla-Ferré D (2007) A density functional theory study of HCN hydrogenation to methylamine on Co(111). J Catal 248:38–45

    Article  CAS  Google Scholar 

  49. Zhao Y-H, Wang Y-Y, Gao L, Song H (2015) Density functional theory and reduced density gradient investigations into HCN adsorption on the Co(100) and Co(110) surfaces. Indian J Chem 54A:459–468

    CAS  Google Scholar 

  50. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  52. David H, Sílvia S, Miquel D (2004) Counterpoise-corrected potential energy surfaces for dihydrogen bonded systems. Chem Phys Lett 386:373–376

    Article  Google Scholar 

  53. Andreea CG, Petru M, Undina S (2005) Effect of supports on the activity of nickel catalysts in acetonitrile hydrogenation. Appl Catal A Gen 294:208–214

    Article  Google Scholar 

  54. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33:580–582

    Article  Google Scholar 

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: visualmoleculardynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Natural Science Foundation of Shanxi Province for Youths, China (Grant No. 2014021025-2), Natural Science Foundation of Shanxi Province for Youths, China (Grant No.2015021056), Doctoral Initiating Project of Taiyuan University of Science and Technology, China (Grant No. 20122049), and State Key Lab of Advanced Welding & Joining, Harbin Institute of Technology (AWJ-M13-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Ren, Fd. & Wang, YH. Theoretical insight into the BH3·HCN adsorption on the Co(100) and Co(110) surfaces as hydrogen storage. J Mol Model 23, 126 (2017). https://doi.org/10.1007/s00894-017-3298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3298-8

Keywords

Navigation