Skip to main content
Log in

Theoretical insights into the effects of molar ratios on stabilities, mechanical properties, and detonation performance of CL-20/HMX cocrystal explosives by molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To research and estimate the effects of molar ratios on structures, stabilities, mechanical properties, and detonation properties of CL-20/HMX cocrystal explosive, the CL-20/HMX cocrystal explosive models with different molar ratios were established in Materials Studio (MS). The crystal parameters, structures, stabilities, mechanical properties, and some detonation parameters of different cocrystal explosives were obtained and compared. The molecular dynamics (MD) simulation results illustrate that the molar ratios of CL-20/HMX have a direct influence on the comprehensive performance of cocrystal explosive. The hardness and rigidity of the 1:1 cocrystal explosive was the poorest, while the plastic property and ductibility were the best, thus implying that the explosive has the best mechanical properties. Besides, it has the highest binding energy, so the stability and compatibility is the best. The cocrystal explosive has better detonation performance than HMX. In a word, the 1:1 cocrystal explosive is worth more attention and further research. This paper could offer some theoretical instructions and technological support, which could help in the design of the CL-20 cocrystal explosive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agrawal JP (1998) Recent trends in high-energy materials. Prog Energy Combust Sci 24:1–30

    Article  CAS  Google Scholar 

  2. Sikder AK, Sikder N (2004) A review of advanced high performance, insensitive and thermally stable energetic materials emerging for military and space applications. J Hazard Mater 112:1–15

    Article  CAS  Google Scholar 

  3. Lara OF, Espinosa PG (2007) Cocrystals definitions. Supramol Chem 19:553–557

    Article  Google Scholar 

  4. Shan N, Zaworotko MJ (2008) The role of cocrystals in pharmaceutical science. Drug Discov Today 13:440–446

    Article  CAS  Google Scholar 

  5. Clarke SM, Friscic T, Jones W (2011) Observation of a two-dimensional halogen-bonded cocrystal at sub-monolayer coverage using synchrotron X-ray diffraction. Chem Commun 47:2526–2528

    Article  CAS  Google Scholar 

  6. Alhalaweh A, George S, Bostrom D (2010) 1:1 and 2:1 urea-succinic acid cocrystals: structural diversity, solution chemistry, and thermodynamic stability. Cryst Growth Des 11:4847–4855

    Article  Google Scholar 

  7. Xu HF, Duan XH, Li HZ, Pei CH (2015) A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 5:95764–95770

    Article  CAS  Google Scholar 

  8. Guo DZ, An Q, Goddard WA, Zybin SV, Huang FL (2014) Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. J Phys Chem C 118:30202–30208

    Article  CAS  Google Scholar 

  9. Guo CY, Zhang HB, Wang XC, Xu JJ, Liu Y, Liu XF, Huang H, Sun J (2013) Crystal structure and explosive performance of a new CL-20/caprolactam cocrystal. J Mol Struct 1048:267–273

    Article  CAS  Google Scholar 

  10. Liu K, Zhang G, Luan JY, Chen ZQ, Su PF, Shu YJ (2016) Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT. J Mol Struct 110:91–96

    Article  Google Scholar 

  11. Wu JT, Zhang JG, Li T, Li ZM, Zhang TL (2015) A novel cocrystal explosive NTO/TZTN with good comprehensive properties. RSC Adv 5:28354–28359

    Article  CAS  Google Scholar 

  12. Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

    Article  CAS  Google Scholar 

  13. Sun T, Liu Q, Xiao JJ, Zhao F, Xiao HM (2014) Molecular dynamics simulation of interface interactions and mechanical properties of CL-20/HMX cocrystal and its based PBXs. Acta Chim Sin 72:1036–1042

    Article  CAS  Google Scholar 

  14. Ding X, Gou RJ, Ren FD, Liu F, Zhang SH, Gao HF (2016) Molecular dynamics simulation and density functional theory insight into the cocrystal explosive of hexaazaisowurtzitane/nitroguanidine. Int J Quantum Chem 116:88–96

    Article  CAS  Google Scholar 

  15. Xiong SL, Chen SS, Jin SH, Zhang CY (2016) Molecular dynamics simulations on dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate/hexanitrohexaazaisowurtzitane cocrystal. RSC Adv 6:4221–4226

    Article  CAS  Google Scholar 

  16. Li HQ, An CW, Guo WJ, Geng XH, Wang JY, Xu WZ (2015) Preparation and performance of nano HMX/TNT cocrystals. Propellants Explos Pyrotech 40:652–658

    Article  CAS  Google Scholar 

  17. Lin H, Zhu SG, Li HZ, Peng XH (2013) Structure and detonation performance of a novel HMX/LLM-105 cocrystal explosive. J Phys Org Chem 26:898–907

    Article  CAS  Google Scholar 

  18. Yang ZW, Zhang YL, Li HZ, Zhou XQ, Nie FD, Li JS, Huang H (2012) Preparation, structure and properties of CL-20/TNT cocrystal. Chin J Energ Mater 20:674–679

    CAS  Google Scholar 

  19. Guo CY, Zhang HB, Wang XC, Liu XF, Sun J (2013) Study on a novel energetic cocrystal of TNT/TNB. J Mater Sci 48:1351–1357

    Article  CAS  Google Scholar 

  20. Lin H, Zhu SG, Zhang L, Peng XH, Li HZ (2013) Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J Energ Mater 31:261–272

    Article  CAS  Google Scholar 

  21. Zhou JH, Shi LW, Zhang CY, Li HZ, Chen MB, Chen WM (2016) Theoretical analysis of the formation driving force and decreased sensitivity for CL-20 cocrystals. J Mol Struct 1116:93–101

    Article  CAS  Google Scholar 

  22. Wei YJ, Ren FD, Shi WJ, Zhao Q (2016) Theoretical insight into the influences of molecular ratios on stabilities and mechanical properties, solvent effect of HMX/FOX-7 cocrystal explosive. J Energ Mater 34:426–439

    Article  CAS  Google Scholar 

  23. Urbelis JH, Young VG, Swift JA (2015) Using solvent effects to guide the design of a CL-20 cocrystal. Cryst Eng Comm 17:1564–1568

    Article  CAS  Google Scholar 

  24. Chen J, Duan XH, Pei CH (2013) Preparation and characterization of HMX/AP co-crystal. Chin J Energ Mater 21:409–413

    CAS  Google Scholar 

  25. Feng RZ, Zhang SH, Ren FD, Gou RJ, Gao L (2016) Theoretical insight into the binding energy and detonation performance of ε-, γ-, β-CL-20 cocrystals with β-HMX, FOX-7, and DMF in different molar ratios, as well as electrostatic potential. J Mol Model 22:123

    Article  Google Scholar 

  26. Li YX, Chen SS, Ren FD (2015) Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. J Mol Model 21:245

    Article  CAS  Google Scholar 

  27. Agrawal JP (2005) Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech 30:316–328

    Article  CAS  Google Scholar 

  28. Foltz MF, Coon CL, Garcia F (1994) The thermal stability of the polymorphs of hexanitrohexaazaisowurtzitane, Part I. Propellants Explos Pyrotech 19:19–25

    Article  CAS  Google Scholar 

  29. Chang SC, Henry PB (1970) A study of the crystal structure of β-cyclotetramethylene tetranitramine by neutron diffraction. Acta Crystallogr B 26:1235–1240

    Article  Google Scholar 

  30. Cady HH, Larson AC, Cromer DT (1963) The crystal of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr 16:617–623

    Article  CAS  Google Scholar 

  31. Materials Studio 7.0 (2013) Accelrys Software Inc, San Diego, CA

  32. Zhao XQ, Shi NC (1995) Crystal structure of ε-hexanitrohexaazaisowurtzitane. Chin Sci Bull 40:2158–2160

    Google Scholar 

  33. Sun H, Ren PJ, Fried R (1998) The COMPASS force field: parameterization and validation for phosphazenes. Comput Theor Polym Sci 8:229–246

    Article  CAS  Google Scholar 

  34. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS Forcefield. J Chem Chem B 104:2477–2489

    Article  CAS  Google Scholar 

  35. Michael JM, Sun H, Rigby D (2004) Development and validation of COMPASS force field parameters for molecules with aliphatic azide chains. J Comput Chem 25:61–71

    Article  Google Scholar 

  36. Wu JL (1993) Mechanics of Elasticity. Tongji University Press, Shanghai

    Google Scholar 

  37. Weiner JH (1983) Statistical Mechanics of Elasticity. John Wiley, New York

    Google Scholar 

  38. Zhu W, Xiao JJ, Zhu WH, Xiao HM (2009) Molecular dynamics simulations of RDX and RDX-based plastic-bonded explosives. J Hazard Mater 164:1082–1088

    Article  CAS  Google Scholar 

  39. Xu XJ, Xiao HM, Xiao JJ, Zhu W, Huang H, Li JS (2006) Molecular dynamics simulations for pure ε-CL-20 and ε-CL-20-based PBXs. J Phys Chem B 110:7203–7207

    Article  CAS  Google Scholar 

  40. Qiu L, Xiao HM (2009) Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J Hazard Mater 164:329–336

    Article  CAS  Google Scholar 

  41. Muthurajan H, Sivabalan R, Talawar MB, Asthana SN (2004) Computer simulation for prediction of performance and thermodynamic parameters of high energy materials. J Hazard Mater 112:17–33

    Article  CAS  Google Scholar 

  42. Cooper PW (1992) Extending estimation of C-J pressure of explosives to the very low-density region. Proceed 18th Int Pyrotech Symp

  43. Ou YX (2006) Explosives. Beijing Institute of Technology Press, Beijing

    Google Scholar 

  44. Jin SH, Song QC (2010) Explosive Theory. Northwestern Polytechnical University Press, Xi’an

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-yun Hang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, Gy., Yu, Wl., Wang, T. et al. Theoretical insights into the effects of molar ratios on stabilities, mechanical properties, and detonation performance of CL-20/HMX cocrystal explosives by molecular dynamics simulation. J Mol Model 23, 30 (2017). https://doi.org/10.1007/s00894-016-3193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3193-8

Keywords

Navigation