Skip to main content
Log in

Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The overall objective was to identify an accurate computational electronic method to virtually screen phenolic compounds through their antioxidant and free-radical scavenging activity. The impact of a key parameter of the density functional theory (DFT) approach was studied. Performances of the 21 most commonly used exchange-correlation functionals are thus detailed in the evaluation of the main energetic parameters related to the activities of two prototype antioxidants, namely quercetin and edaravone, is reported. These functionals have been chosen among those belonging to three different families of hybrid functionals, namely global, range separated, and double hybrids. Other computational parameters have also been considered, such as basis set and solvent effects. The selected parameters, namely bond dissociation enthalpy (BDE), ionization potential (IP), and proton dissociation enthalpy (PDE) allow a mechanistic evaluation of the antioxidant activities of free radical scavengers. Our results show that all the selected functionals provide a coherent picture of these properties, predicting the same order of BDEs and PDEs. However, with respect to the reference values, the errors found at CBS-Q3 level significantly vary with the functional. Although it is difficult to evidence a global trend from the reported data, it clearly appears that LC-ωPBE, M05-2X, and M06-2X are the most suitable approaches for the considered properties, giving the lowest cumulative mean absolute errors. These methods are therefore suggested for an accurate and fast evaluation of energetic parameters related to an antioxidant activity via free radical scavenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niki E (2000) Free Radic Res 33:693

    Article  CAS  Google Scholar 

  2. Inal ME, Kanbak G, Sunal E (2001) Clin Chim Acta 305:75

    Article  CAS  Google Scholar 

  3. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, Wilson RS, Scherr PA (2002) JAMA 287:3230

    Article  CAS  Google Scholar 

  4. Markesbery WR, Carney JM (1999) Brain Pathol 9:133

    Article  CAS  Google Scholar 

  5. Agarwal A, Gupta S, Sekhon L, Shah R (2008) Antioxid Redox Signal 10:1375

    Article  CAS  Google Scholar 

  6. Wondrak GT (2009) Antioxid Redox Signal 11:3013

    Article  CAS  Google Scholar 

  7. De Vries HE, Witte M, Hondius D, Rozemuller AJM, Drukarch B, Hoozemans J, Van Horssen J (2008) Free Radic Biol Med 45:1375

    Article  CAS  Google Scholar 

  8. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) FASEB J 17:1195

    Article  CAS  Google Scholar 

  9. Pinnell SR, Oresajo C (2010) European Dermatol 5:32

    Google Scholar 

  10. Hertog MGL, Feskens EJM, Kromhout D, Hollman PCH, Katan MB (1993) Lancet 342:1007

    Article  CAS  Google Scholar 

  11. Trichopoulou A, Vasilopoulou E (2000) Br J Nutr 84:S205

    Article  CAS  Google Scholar 

  12. Cadenas E, Packer L (2002) Handbook of Antioxidants. Dekker, New York

    Google Scholar 

  13. Hercberg S, Galan P, Preziosi P, Bertrais S, Mennen L, Malvy D, Roussel AM, Favier A, Briançon S (2004) Arch Intern Med 164:2335

    Article  CAS  Google Scholar 

  14. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  15. Ceron-Carrasco JP, Roy HM, Cerezo J, Jacquemin D, Laurent AD (2014) Chem Phys Lett 599:73

    Article  CAS  Google Scholar 

  16. Mazzone G, Malaj N, Russo N, Toscano M (2013) Food Chem 141:2017

    Article  CAS  Google Scholar 

  17. Kozlowski D, Trouillas P, Calliste C, Marsal P, Lazzaroni R, Duroux J-L (2007) J Phys Chem A 111:1138

    Article  CAS  Google Scholar 

  18. Wang L-F, Zhang H-Y (2003) Bioorg Med Chem Lett 13:3789

    Article  CAS  Google Scholar 

  19. Borges RS, Queiroz AN, Silva JR, Mendes APS, Herculano AM, Chaves Neto AMJ, Da Silva ABF (2012) Struct Chem 24:349

    Article  CAS  Google Scholar 

  20. Sadasivam K, Kumaresan R (2011) Mol Phys 109:839

    Article  CAS  Google Scholar 

  21. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288

    Article  CAS  Google Scholar 

  22. Bentes A, Borges R, Monteiro W, De Macedo L, Alves C (2011) Molecules 16:1749

    Article  CAS  Google Scholar 

  23. Wang G, Xue Y, An L, Zheng Y, Dou Y, Zhang L, Liu Y (2015) Food Chem 171:89

    Article  CAS  Google Scholar 

  24. Pérez-González A, Rebollar-Zepeda AM, León-Carmona JR, Galano A, Rafael MS, Vicentina C (2012) J Mex Chem Soc 56:241

    Google Scholar 

  25. Pérez-González A, Galano A (2001) J Phys Chem B 115:1306

    Article  CAS  Google Scholar 

  26. Pérez-González A, Galano A (2012) Int J Quantum Chem 112:3441

    Article  CAS  Google Scholar 

  27. Nenadis N, Tsimidou MZ (2012) Food Res Int 48:538

    Article  CAS  Google Scholar 

  28. Klein E, Lukeš V (2006) J Phys Chem A 110:12312

    Article  CAS  Google Scholar 

  29. Klein E, Lukeš V, Ilčin M (2007) Chem Phys 336:51

    Article  CAS  Google Scholar 

  30. Borges I, Aquino JA, Ko A, Nieman R, Hase WL, Chen LX, Lischka H (2013) J Am Chem Soc 135:18252

    Article  CAS  Google Scholar 

  31. Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acta 111:210

    Article  CAS  Google Scholar 

  32. Galano A, Marquez MF, Pérez-Gonzaléz A (2014) Chem Res Toxicol 27:904

    Article  CAS  Google Scholar 

  33. Vega-Rodriguez A, Alvarez-Idaboy JR (2009) Phys Chem Chem Phys 11:7649

    Article  CAS  Google Scholar 

  34. Di Meo F, Lemaur V, Cornil J, Lazzaroni R, Duroux JL, Olivier Y, Trouillas P (2013) J Phys Chem A 117:2082

    Article  CAS  Google Scholar 

  35. Chan B, Radom L (2011) Theor Chem Acc 130:251

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157

    Article  CAS  Google Scholar 

  37. Watanabe T, Yuki S, Egawa M, Nishi H (1994) J Pharmacol Exp Ther 268:1597

    CAS  Google Scholar 

  38. Havsteen BH (2002) Pharm Ther 96:67

    Article  CAS  Google Scholar 

  39. Jung SY, Kim HJ, Lee J, Cho J, Lee YS, Jin C (2012) Bull Korean Chem Soc 33:2443

    Article  CAS  Google Scholar 

  40. Amic A, Markovic Z, Markovic JMD, Stepanic V, Lucic B, Amic D (2014) Food Chem 152:578

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Wilson PJ, Bradley TJ, Tozer DJ (2001) J Chem Phys 115:9233

    Article  CAS  Google Scholar 

  44. Adamo C, Barone V (1997) Chem Phys Lett 274:242

    Article  CAS  Google Scholar 

  45. Boese AD, Martin JML (2004) J Chem Phys 121:3405

    Article  CAS  Google Scholar 

  46. Xu X, Goddard WA (2004) Proc Natl Acad Sci U S A 101:2673

    Article  CAS  Google Scholar 

  47. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  48. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  49. Adamo C, Barone V (1998) J Chem Phys 108:664

    Article  CAS  Google Scholar 

  50. Lynch BJ, Fast PL, Harris M, Truhlar G (2000) J Phys Chem A 104:4811

    Article  CAS  Google Scholar 

  51. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  52. Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029

    Article  CAS  Google Scholar 

  53. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126

    Article  CAS  Google Scholar 

  54. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  55. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364

    Article  CAS  Google Scholar 

  56. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  57. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  58. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:74106

    Article  CAS  Google Scholar 

  59. Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109

    Article  CAS  Google Scholar 

  60. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615

    Article  CAS  Google Scholar 

  61. Chai J-D, Head-Gordon M (2008) J Chem Phys 128:84106

    Article  CAS  Google Scholar 

  62. Grimme S (2006) J Chem Phys 124:34108

    Article  CAS  Google Scholar 

  63. Stephens PJ, Devlin FL, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623

    Article  CAS  Google Scholar 

  64. Barone V, Adamo C (1994) Chem Phys Lett 224:432

    Article  CAS  Google Scholar 

  65. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669

    Article  CAS  Google Scholar 

  66. Rimarčík J, Lukeš V, Klein E, Ilčin M (2010) J Mol Struct THEOCHEM 952:25

    Article  CAS  Google Scholar 

  67. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  68. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532

    Article  CAS  Google Scholar 

  69. Zhang D, Liu Y, Chu L, Wei Y, Wang D, Cai S, Zhou F, Ji B (2013) J Phys Chem A 117:1784

    Article  CAS  Google Scholar 

  70. Vondrok T, Bastl Z, Böhm S (1988) J Chem Soc Perkin Trans 2:641

    Article  Google Scholar 

  71. Russo N, Toscano M, Uccella N (2000) J Agric Food Chem 48:3232

    Article  CAS  Google Scholar 

  72. Fu Y, Liu L, Yu H-Z, Wang Y-M, Guo Q-X (2005) J Am Chem Soc 127:7227

    Article  CAS  Google Scholar 

  73. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  Google Scholar 

  74. Adamo C, Lelj F (1994) Chem Phys Lett 223:54

    Article  CAS  Google Scholar 

  75. Ciofini I, Chermette H, Adamo C (2003) Chem Phys Lett 380:12

    Article  CAS  Google Scholar 

  76. Mangiatordi GF, Brémond E, Adamo C (2012) J Chem Theory Comput 8:3082

    Article  CAS  Google Scholar 

  77. Savarese M, Brémond E, Adamo C (2016) Theor Chem Acc 135:1

    Article  CAS  Google Scholar 

  78. Goerigk L (2015) J Phys Chem Lett 6:3891

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Adamo.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Rocca, M., Rutkowski, M., Ringeissen, S. et al. Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies. J Mol Model 22, 250 (2016). https://doi.org/10.1007/s00894-016-3118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3118-6

Keywords

Navigation