Skip to main content
Log in

Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Regulation of the mechanical properties of proteins plays an important role in many biological processes, and sheds light on the design of biomaterials comprised of protein. At present, strategies to regulate protein mechanical stability focus mainly on direct modulation of the force-bearing region of the protein. Interestingly, the mechanical stability of GB1 can be significantly enhanced by the binding of Fc fragments of human IgG antibody, where the binding site is distant from the force-bearing region of the protein. The mechanism of this long-range allosteric control of protein mechanics is still elusive. In this work, the impact of ligand binding on the mechanical stability of GB1 was investigated using steered molecular dynamics simulation, and a mechanism underlying the enhanced protein mechanical stability is proposed. We found that the external force causes deformation of both force-bearing region and ligand binding site. In other words, there is a long-range coupling between these two regions. The binding of ligand restricts the distortion of the binding site and reduces the deformation of the force-bearing region through a long-range allosteric communication, which thus improves the overall mechanical stability of the protein. The simulation results are very consistent with previous experimental observations. Our studies thus provide atomic-level insights into the mechanical unfolding process of GB1, and explain the impact of ligand binding on the mechanical properties of the protein through long-range allosteric regulation, which should facilitate effective modulation of protein mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a–c
Fig. 7a,b
Fig. 8a–c

Similar content being viewed by others

References

  1. Dietz H, Rief M (2004) Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci USA 101:16192–16197

    Article  CAS  Google Scholar 

  2. Cao Y, Li H (2007) Poly protein of GB1 is an ideal artificial elastomeric protein. Nat Mater 6:109–114

    Article  CAS  Google Scholar 

  3. Paci E, Karplus M (2000) Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc Natl Acad Sci USA 97:6521–6526

    Article  CAS  Google Scholar 

  4. Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico. Science 316:1144–1148

    Article  CAS  Google Scholar 

  5. Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74:63–91

    Article  CAS  Google Scholar 

  6. Lu H, Schulten K (2000) The key event in force-induced unfolding of titin’s immunoglobulin domains. Biophys J 79:51–65

    Article  CAS  Google Scholar 

  7. Cao Y, Lam C, Wang M, Li H (2006) Nonmechanical protein can have significant mechanical stability. Angew Chem Int Ed 45:642–645

    Article  CAS  Google Scholar 

  8. Galera-Prat A, Gómez-Sicilia A, Oberhauser AF, Cieplak M, Carrión-Vázquez M (2010) Understanding biology by stretching proteins: recent progress. Curr Opin Struct Biol 20:63–69

    Article  CAS  Google Scholar 

  9. Forman JR, Clarke J (2007) Mechanical unfolding of proteins: insight into biology, structure and folding. Curr Opin Struct Biol 17:58–66

    Article  CAS  Google Scholar 

  10. Browne JP, Strom M, Martin SR, Bayley PM (1997) The role of β-sheet interactions in domain stability, folding, and target recognition reactions of calmodulin. Biochemistry 36:9550–9561

    Article  CAS  Google Scholar 

  11. Glyakina AV, Balabaev NK, Galzitskaya OV (2009) Mechanical unfolding of proteins L and G with constant force: similarities and differences. J Chem Phys 131:045102

    Article  CAS  Google Scholar 

  12. Glyakina AV, Balabaev NK, Galzitskaya OV (2013) Experimental and theoretical studies of mechanical unfolding of different proteins. Biochemistry Moscow 78:1216–1227

    Article  CAS  Google Scholar 

  13. Sharma D, Perisic O, Peng Q, Cao Y, Lam C, Lu H, Li H (2007) Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability. Proc Natl Acad Sci USA 104:9278–9283

    Article  CAS  Google Scholar 

  14. Borgia A, Steward A, Clarke J (2008) An effective strategy for the design of proteins with enhanced mechanical stability. Angew Chem Int Ed Engl 47:6900–6903

    Article  CAS  Google Scholar 

  15. Sharma D, Cao Y, Li H (2006) Nonlinear self-excited oscillation of a synthetic ion-channel-inspired membrane. Angew Chem Int Ed Engl 45:5630–5633

    Article  Google Scholar 

  16. Li J, Fernandez JM, Berne BJ (2010) Hydrophobic effect on the mechanical stability of ubiquitin. Proc Natl Acad Sci USA 107:19284–19289

    Article  CAS  Google Scholar 

  17. Cao Y, Yoo T, Li H (2008) Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins. Proc Natl Acad Sci USA 105:11152

    Article  CAS  Google Scholar 

  18. Sharma D, Feng G, Khor D, Genchev GZ, Lu H, Li H (2008) Stabilization provided by neighboring strands is critical for the mechanical stability of proteins. Biophys J 95:3935–3942

    Article  CAS  Google Scholar 

  19. Williams PM, Fowler SB, Best RB, Toca-Herrera JL, Scott KA, Steward A, Clarke J (2003) Hidden complexity in the mechanical properties of titin. Nature 422:446–449

    Article  CAS  Google Scholar 

  20. Cao Y, Balamurali MM, Sharma D, Li H (2007) A functional single-molecule binding assay via force spectroscopy. Proc Natl Acad Sci USA 104:15677–15681

    Article  CAS  Google Scholar 

  21. Cao Y, Yoo T, Zhuang S, Li H (2008) Protein–protein interaction regulates proteins mechanical stability. J Mol Biol 378:1132–1141

    Article  CAS  Google Scholar 

  22. Lin YW, Wang ZH, Ni FY, Huang ZX (2008) Forced Unfolding of Apocytochrome b5 by steered molecular dynamics simulation. Protein J 27:197–203

    Article  CAS  Google Scholar 

  23. Jitonnom J, Sontag C (2012) Comparative study on activation mechanism of carboxypeptidaseA1, A2 and B: first insights from steered molecular dynamics simulations. J Mol Graph Model 38:298–303

    Article  CAS  Google Scholar 

  24. Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671

    Article  CAS  Google Scholar 

  25. Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, Fernandez JM (1999) Mechanical unfolding intermediates in titin modules. Nature 402:100–103

    Article  CAS  Google Scholar 

  26. Gao M, Craig D, Vogel V, Schulten K (2002) Identifying unfolding intermediates of FN-III10 by steered molecular dynamics. J Mol Biol 323:939–950

    Article  CAS  Google Scholar 

  27. Kim T, Rhee A, Yip CM (2006) Force-induced insulin dimer dissociation: a molecular dynamics study. J Am Chem Soc 128:5330–5331

    Article  CAS  Google Scholar 

  28. Gao M, Wilmanns M, Schulten K (2002) Steered molecular dynamics studies of titin I1 domain unfolding. Biophys J 83:3435–3445

    Article  CAS  Google Scholar 

  29. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. J Struct Biol 11:224–230

    CAS  Google Scholar 

  30. Zhang Y, Lou JZ (2012) The Ca2+ influence on calmodulin unfolding pathway: a steered molecular dynamics simulation study. PLoS One 11, e49013

    Article  Google Scholar 

  31. Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657–661

    Article  CAS  Google Scholar 

  32. Sauer-Eriksson AE, Kleywegt GJ, Uhlen M, Jones TA (1995) Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3:265–278

    Article  CAS  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  34. Wong AKL, Goscinski AM (2012) A VMD Plugin for NAMD Simulations on Amazon EC2. Procedia Comput Sci 9:136–145

    Article  Google Scholar 

  35. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  36. Li YD, Lamour G, Gsponer J, Zheng P, Li H (2012) The molecular mechanism underlying mechanical anisotropy of the protein GB1. Biophys J 103:2361–2368

    Article  CAS  Google Scholar 

  37. Brockwell DJ, Paci E, Radford SE (2003) Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat Struct Biol 10:731–737

    Article  CAS  Google Scholar 

  38. MacKerell AD Jr, Bashford D, Bellot M, Dunbrack RL Jr, Evanseck JD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins using the CHARMM22 force field. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  39. Crampton N, Brockwell DJ (2010) Unravelling the design principles for single protein mechanical strength. Curr Opin Struct Biol 20:508–517

    Article  CAS  Google Scholar 

  40. Li MS (2007) Secondary structure, mechanical stability, and location of transition state of proteins. Biophys J 93:2644–2654

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Natural Science Foundation of China (11204267, 21473207, 31171267), National Basic Research Program of China (973 program No. 2013CB933704), Natural Science Foundation of Hebei Province (A2014203126), Program for the Top Young Talents of Hebei Province, and the Beijing Municipal Education Commission (KM201310005030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Hua Li or Jing-Yuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, JG., Zhao, SX., Wang, XF. et al. Effects of ligand binding on the mechanical stability of protein GB1 studied by steered molecular dynamics simulation. J Mol Model 22, 188 (2016). https://doi.org/10.1007/s00894-016-3052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3052-7

Keywords

Navigation