Skip to main content
Log in

Theoretical investigations on the stability of alkali metal substituted phenylpentazole

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The alkali metal (M=Li, Na, and K) para-substituted (M-1), meta-substituted (M-2) or ortho-substituted (M-3) derivatives of phenylpentazole (PhN5) were studied using density functional theory. The substituted metals improve the energy barrier for decomposition of the N5 ring of PhN5 by 19.3 ∼ 65.0 kJ/mol. M-3 has the ionic N-M bond, which is not found for M-1 and M-2. M-1 and M-2 have similar electrostatic potentials and dispersion interactions between metal and N5 ring. The comparable intramolecular interactions of M-1 and M-2 lead to similar N5 ring stability. Compared to M-1 and M-2, M-3 has a more negative charge on N5 ring and stronger dispersion interaction. The stronger intramolecular interactions of M-3 result in the higher N5 ring stability. For M-1 and M-2, different metals have slight affects on N5 ring stability. For M-3, N5 ring stability decreases in the order of Li > Na > K. The substituted metal lowers E g of PhN5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) N5 +: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 38(13–14):2004–2009

    Article  CAS  Google Scholar 

  2. Gagliardi L, Pyykkö P (2002) η5-N5 -Metal-η7-N7 3−: a new class of compounds. J Phys Chem A 106(18):4690–4694

    Article  CAS  Google Scholar 

  3. Nguyen MT (2006) Polynitrogen compounds: 1. Structure and stability of N4 and N5 systems. Coord Chem Rev 244(1–2):93–113

    Google Scholar 

  4. Belau L, Haas Y, Zilberg S (2004) Formation of the cyclo-Pentazolate N5 Anion by High-Energy Dissociation of Phenylpentazole Anions. J Phys Chem A 108(52):11715–11720

    Article  CAS  Google Scholar 

  5. Carlqvist P, Östmark H, Brinck T (2004) The stability of arylpentazoles. J Phys Chem A 108:7463–7467

    Article  CAS  Google Scholar 

  6. Strout DL (2004) Isomer stability of N24, N30, and N36 cages: cylindrical versus spherical structure. J Phys Chem A 108(13):2555–2558

    Article  CAS  Google Scholar 

  7. Wang L, Mezey PG (2005) Predicted high-energy molecules: helical all-nitrogen and helical nitrogen-rich ring clusters. J Phys Chem A 109(14):2341–2343

    Article  Google Scholar 

  8. Wua H-S, Xua X-H, Jiaob H (2005) Structure and stability of perazido substituted azacycloalkanes, Nn(N3)n. Chem Phys Lett 412(4–6):299–302

    Article  Google Scholar 

  9. Colvin KD, Strout DL (2005) Stability of nitrogen-oxygen cages N12O2, N14O2, N14O3, and N16O4. J Phys Chem A 109(35):8011–8015

    Article  CAS  Google Scholar 

  10. Huisgen R (1963) 1, 3-dipolar cycloadditions. Past and future. Angew Chem Int Ed 2(10):565–598

    Article  Google Scholar 

  11. Wu Y, Deng J, Li Y, Chen Q (2005) Regiospecific synthesis of 1, 4, 5-trisubstituted-1, 2, 3-triazole via one-pot reaction promoted by copper (I) salt. Synthesis 8:1314–1318

    Article  Google Scholar 

  12. Fazio F, Bryan MC, Blixt O, Paulson JC, Wong CH (2002) Synthesis of sugar arrays in microtiter plate. J Am Chem Soc 124(48):14397–14402

    Article  CAS  Google Scholar 

  13. Mindt TL, Schibli R (2007) Cu (I)-Catalyzed intramolecular cyclization of alkynoic acids in aqueous media: a “alick aide reaction”. J Org Chem 72(26):10247–10250

    Article  CAS  Google Scholar 

  14. Wittenberger SJ (1994) Recent developments in tetrazole chemistry. A review. Org Prep Proced Int 26(5):499–531

    Article  CAS  Google Scholar 

  15. Wittenberger SJ, Donner BG (1993) Dialkyltin oxide mediated addition of trimethylsilyl azide to nitriles. A novel preparation of 5-substituted tetrazols. J Org Chem 58(15):4139–4141

    Article  CAS  Google Scholar 

  16. Curran DP, Hadida S, Kim SY (1999) tris(2-perfluorohexylethyl)tin azide: a new reagent for preparation of 5-substituted tetrazoles from nitriles with purification by fluorous/organic liquid-liquid extraction. Tetrahedron 55(29):8997–9006

    Article  CAS  Google Scholar 

  17. Demko ZP, Sharpless KB (2001) Preparation of 5-substituted 1H-tetrazoles from nitriles in water. J Org Chem 66(24):7945–7950

    Article  CAS  Google Scholar 

  18. Athanassopoulos CM, Garnelis T, Vahliotis D, Papaioannou D (2005) Efficient syntheses of 5-aminoalkyl-1H-tetrazoles and of polyamines incorporating tetrazole rings. Org Lett 7(4):561–564

    Article  CAS  Google Scholar 

  19. Demko ZP, Sharpless KB (2002) A click chemistry approach to tetrazoles by Huisgen 1, 3-dipolar cycloaddition: synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides. Angew Chem Int Ed 41(12):2110–2113

    Article  CAS  Google Scholar 

  20. Hajra S, Sinha D, Bhowmick M (2007) Metal triflate catalyzed reactions of alkenes, NBS, nitriles, and TMSN3: synthesis of 1, 5-disubstituted tetrazoles. J Org Chem 72(5):1852–1855

    Article  CAS  Google Scholar 

  21. Li G, Li Y, Ma Q, Sun C, Pang S (2010) Progress in cycloaddition of nitrogen-rich azole. Org Chem 30(10):1431–1440

    CAS  Google Scholar 

  22. Ugi I, Huisgen R, Clusius K, Vecchi M (1956) Zur reaktion des benzol-diazonium-Ions mit azid nachweis des phenyl-pentazols als zwischenstufe. Angew Chem 68(23):753–754

    Article  CAS  Google Scholar 

  23. Benin V, Kaszynski P, Radziszewski G (2002) Arylpentazoles revisited: experimental and theoretical studies of 4-hydroxyphenylpentazole and 4-oxophenylpentazole anion. J Org Chem 67(4):1354–1358

    Article  CAS  Google Scholar 

  24. Östmark H, Wallin S, Brinck T, Carlqvist P, Claridge R, Hedlund E, Yudina L (2003) Detection of pentazolate anion (cyclo-N5 ) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem Phys Lett 379(5):539–546

    Article  Google Scholar 

  25. Butler RN, Hanniffy JM, Stephens JC, Burke LA (2008) A ceric ammonium nitrate N-dearylation of N-p-anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. generation of unstable pentazole, HN5/N5 , in solution. J Org Chem 73(4):1354–1364

    Article  CAS  Google Scholar 

  26. Frison G, Jacob G, Ohanessian G (2013) Guiding the synthesis of pentazole derivatives and their mono-and di-oxides with quantum modeling. New J Chem 37(3):611–618

    Article  CAS  Google Scholar 

  27. Swain PK (2010) Theoretical investigation of 4-amino triazolylpentazole: a breakthrough to nitrogen-rich heterocycles. J Mol Liq 157(1):1–5

    Article  CAS  Google Scholar 

  28. Chen XF, Bu JH, Yu T, Lai WP, Ge ZX (2013) The stability of substituted benzylpentazoles. Commun Comput Chem 1(2):118–123

    Google Scholar 

  29. Xu M, Pan Q, Chen ZQ, Zhang G, Ning YL, Wang MC, Wang M, Bi FQ (2013) Structure recognition of p-tertbutylphenylpentazole and its decomposition product. Chin J Explos Propell 1:005

    Google Scholar 

  30. Xu M, Bi FQ, Zhang G, Wang MC, Ge ZX, CHEN ZQ, Xu C (2012) Synthesis and NMR characterization of p-dimethylaminophenylpentazole and p-hydroxyphenylpentazole at low temperature. Chin J Energ Mater 5:031

    Google Scholar 

  31. Bi FQ, Xu C, Fan XZ, Ge ZX, Wang BZ, Wang MC, Liu Q, Xu M (2012) Synthesis and decomposition kinetics of p-tert-butylphenylpentazole. Chin J Explos Propell 2:002

    Google Scholar 

  32. Zhang XL, Yang JQ, Lu M, Gong XD (2014) Theoretical studies on the stability of phenylpentazole and its substituted derivatives of–OH, −OCH3, −OC2H5 and –N(CH3)2. RSC Adv 4:56095–56101

  33. Zhang XL, Yang JQ, Lu M, Gong XD (2015) Pyridylpentazole and its derivatives: a new source of N5 ? RSC Adv 5(35):27699–27705

  34. Simón L, Goodman JM (2011) How reliable are DFT transition structures? Comparison of GGA, hybrid-meta-GGA and meta-GGA functionals. Org Biomol Chem 9(3):689–700

    Article  Google Scholar 

  35. Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3 N-oxide. J Mater Chem A 2(32):13006–13015

    Article  CAS  Google Scholar 

  36. Yu T, Zheng J, Truhlar DG (2011) Multi-structural variational transition state theory. Kinetics of the 1, 4-hydrogen shift isomerization of the pentyl radical with torsional anharmonicity. Chem Sci 2(11):2199–2213

    Article  CAS  Google Scholar 

  37. Franzen S, Skalski B, Bartolotti L, Delley B (2014) The coupling of tautomerization to hydration in the transition state on the pyrimidine photohydration reaction path. Phys Chem Chem Phys 16(37):20164–20174

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C02; Gaussian, Inc, Wallingford CT

  39. Bader RF (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

    Article  CAS  Google Scholar 

  40. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  41. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 . Angew Chem 114(16):3177–3180

    Article  Google Scholar 

  42. Chen C (2000) Theoretical study of synthetic reaction of tetrazole and tetrazolate anion. Int J Quantum Chem 80(1):27–37

    Article  CAS  Google Scholar 

  43. Geiger U, Elyashiv A, Fraenkel R, Zilberg S, Haas Y (2013) The Raman spectrum of dimethylaminophenyl pentazole (DMAPP). Chem Phys Lett 556:127–131

    Article  CAS  Google Scholar 

  44. Portius P, Davis M, Campbell R, Hartl F, Zeng Q, Meijer AJ, Towrie M (2013) Dinitrogen release from arylpentazole: a picosecond time-resolved infrared, spectroelectrochemical, and DFT computational study. J Phys Chem A 117(48):12759–12769

    Article  CAS  Google Scholar 

  45. Geiger U, Haas Y, Grinstein D (2014) The photochemistry of an aryl pentazole in liquid solutions: the anionic 4-oxidophenylpentazole (OPP). J Photochem Photobiol A Chem 277:53–61

    Article  CAS  Google Scholar 

  46. Kamijo S, Jin T, Huo Z, Gyoung YS, Shim J-G, Yamamoto Y (2003) Tetrazole synthesis via the palladium-catalyzed three component coupling reaction. Mol Divers 6(3–4):181–192

    CAS  Google Scholar 

  47. Zhang XL, Yang JQ, Lu M, Gong XD (2015) Structure, stability and intramolecular interaction of M (N5) 2 (M=Mg, Ca, Sr and Ba): a theoretical study. RSC Adv 5(28):21823–21830

  48. Zhang X, Yang J, Lu M, Gong X (2015) Pyridylpentazole and its derivatives: a new source of N5 − ? RSC Adv 5(35):27699–27705

    Article  CAS  Google Scholar 

  49. Canneaux S, Bohr F, Hénon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93

    Article  CAS  Google Scholar 

  50. Bader RF (1990) Atoms in molecules: a quantum theory, international series of monographs on chemistry 22. Oxford University Press, Oxford

    Google Scholar 

  51. Henkelman G, Arnaldsson A, Jónsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36(3):354–360

    Article  Google Scholar 

  52. Bader RF (1998) A bond path: a universal indicator of bonded interactions. J Phys Chem A 102(37):7314–7323

    Article  CAS  Google Scholar 

  53. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯ F–Y systems. J Chem Phys 117(12):5529–5542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, X. Theoretical investigations on the stability of alkali metal substituted phenylpentazole. J Mol Model 22, 106 (2016). https://doi.org/10.1007/s00894-016-2971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2971-7

Keywords

Navigation