Skip to main content
Log in

The encapsulated lithium effect on the first hyperpolarizability of C60Cl2 and C60F2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this paper, we report a study on the structure and first hyperpolarizability of C60Cl2 and C60F2. The calculation results show that the first hyperpolarizabilities of C60Cl2 and C60F2 were 172 au and 249 au, respectively. Compared with the fullerenes, the first hyperpolarizability of C60Cl2 increased from 0 au to 172 au, while the first hyperpolarizability of C60F2 increased from 0 au to 249 au. In order to further increase the first hyperpolarizability of C60Cl2 and C60F2, Li@C60Cl2 and Li@C60F2 were obtained by introducing a lithium atom to C60Cl2 and C60F2. The first hyperpolarizabilities of Li@C60Cl2 and Li@C60F2 were 2589 au and 985 au, representing a 15-fold and 3.9-fold increase, respectively, over those of C60Cl2 and C60F2. The transition energies of four molecules (C60Cl2, Li@C60Cl2, C60F2, Li@C60F2) were calculated, and were found to be 0.17866 au, 0.05229 au, 0.18385 au, and 0.05212 au, respectively. A two-level model explains why the first hyperpolarizability increases for Li@C60Cl2 and Li@C60F2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coe BJ, Jones LA, Harris JA, Brunschwig BS, Asselberghs I, Clays K, Persoons J (2002) Am Chem Soc 125:862–863

    Article  Google Scholar 

  2. Geskin VM, Lambert C, Brédas JLJ (2003) Am Chem Soc 125:15651–15658

    Article  CAS  Google Scholar 

  3. Serra-Crespo P, van der Veen MA, Gobechiya E, Houthoofd K, Filinchuk Y, Kirschhock CEA, Martens JA, Sels BF, De Vos DE, Kapteijn F et al (2012) J Am Chem Soc 134:8314–8317

    Article  CAS  Google Scholar 

  4. Coe BJ, Foxon SP, Harper EC, Helliwell M, Raftery J, Swanson CA, Brunschwig BS, Clays K, Franz E, Garín J et al (2010) J Am Chem Soc 132:1706–1723

    Article  CAS  Google Scholar 

  5. Desce MB et al (1997) Chem Eur J 3:1091

    Article  Google Scholar 

  6. Marder SR, Gorman CB, Meyers F, Perry JW, Bourhill G, Breds JL, Pierce BM (1994) Science 265:632

    Article  CAS  Google Scholar 

  7. Yang JS, Liau KL, Li CY, Chen MY (2007) J Am Chem Soc 129:13183

    Article  CAS  Google Scholar 

  8. Coe BJ, Jones LA, Harris JA, Brunschwing BS, Asselberghs I, Clays K, Persoons A (2002) J Am Chem Soc 125:862

    Article  Google Scholar 

  9. Coe BJ et al (2009) Inorg Chem 48:1370

    Article  CAS  Google Scholar 

  10. Li Y, Li ZR, Wu D, Li RY, Hao XY, Sun CCJ (2004) Phys Chem B 108:3145–3148

    Article  CAS  Google Scholar 

  11. Chen W, Li ZR, Wu D, Gu FL, Hao XY, Wang BQ, Li RJ, Sun CCJ (2004) Chem Phys 121:10489–10494

    CAS  Google Scholar 

  12. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki YJ (2007) Am Chem Soc 129:2967–2970

    Article  CAS  Google Scholar 

  13. Wu HQ, Zhong RL, Sun SL, Xu HL, Su ZMJ (2014) Phys Chem C 118:6952–6958

    Article  CAS  Google Scholar 

  14. Houk KN, Lee PS, Nendel M (2001) J Org Chem 66:5517

    Article  CAS  Google Scholar 

  15. Tahara K, Tobe Y (2006) Chem Rev 106:5274–5290

    Article  CAS  Google Scholar 

  16. Xu HL, Li ZR, Wu D, Ma F, Li ZJ, Gu FL (2009) J Phys Chem C 113:4984–4986

    Article  CAS  Google Scholar 

  17. Tu CY, Yu GT, Yang GH, Zhao XG, Chen W, Li SC, Huang XR (2014) Phys Chem Chem Phys 16:1597

    Article  CAS  Google Scholar 

  18. Xu HL, Zhang CC, Sun SL, Su ZM (2012) Organometallics 31:4409

    Article  CAS  Google Scholar 

  19. Wang LJ, Sun SL, Zhang RL, Liu Y, Wang DL, Wu HQ, Xu HL, Pan XM, Su ZM (2013) RSC Advances 3:13348

    Article  CAS  Google Scholar 

  20. Shelton DP, Rice JE (1994) Chem Rev 94:3–29

    Article  CAS  Google Scholar 

  21. Willets A, Rice JE, Burland DM, Shelton DP (1992) J Chem Phys 97:7590

    Article  Google Scholar 

  22. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  CAS  Google Scholar 

  23. Boltalina OV, Lukonin AY, Street JM, Taylor R (2000) Chem Commun 2000:1601

  24. Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) J Chem Phys 122:114315

    Article  Google Scholar 

  25. Hu YY, Sun SL, Muhammad S, Xu HL, Su ZM (2010) J Phys Chem C 114:19792

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC et al (2009) Gaussian 09W. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  27. Dennington R, Keith T, Millam JGV (2009) GaussView, version 5. Semichem Inc., Shawnee Mission, KS

    Google Scholar 

  28. O’Boyle NM, Tenderholt AL, Langer KM (2008) J Comput Chem 29:839

    Article  Google Scholar 

  29. Kulshrestha P, Sukumar N, Murray JS, Giese RF, Wood TW (2009) J Phys Chem A 113:756–766

    Article  CAS  Google Scholar 

  30. Politzer P, Murray JS (2012) Theor Chem Acc 131:1114

    Article  Google Scholar 

  31. Politzer P, Murray JS (2013) ChemPhysChem 14:278–294

    Article  CAS  Google Scholar 

  32. Peralta-lnga Z, Lane P, Murray JS, Boyd S, Grice ME, OConnor CJ, Politzer P (2003) Nano Lett 3:21

    Article  Google Scholar 

  33. Scheiner S (2011) J Chem Phys 134:164313

    Article  Google Scholar 

  34. Politzer P, Murray JS (2013) CrystEngComm 15:3145–3150

    Article  CAS  Google Scholar 

  35. Wang LJ, Zhong RL, Sun SL, Xu HL, Pan XM, Su ZM (2014) Dalton Trans 43:9655

    Article  CAS  Google Scholar 

  36. Wang SJ, Li Y, Wang YF, Wu D, Li ZR (2013) Phys Chem Chem Phys 15:12903

    Article  CAS  Google Scholar 

  37. Gao FW, Zhong RL, Sun SL, Xu HL, Zhao L, Su ZM (2015) J Mol Model 21:258

    Article  Google Scholar 

  38. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  39. Oudar JL (1977) J Chem Phys 67:446–457

    Article  CAS  Google Scholar 

  40. Ayan D, Swapan KP (2006) Chem Soc Rev 35:1305–1323

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Fujian University of Technology (GY-Z13109), and the Education Department of Fujian Province (JB14075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-Dong Song or Li-Ming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YD., Wang, L., Wu, LM. et al. The encapsulated lithium effect on the first hyperpolarizability of C60Cl2 and C60F2 . J Mol Model 22, 50 (2016). https://doi.org/10.1007/s00894-016-2918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-2918-z

Keywords

Navigation