Skip to main content
Log in

Self-stability of C60 nanocapsules with radio-iodide content and its interaction with calcium atoms

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This paper inquires the C60 capabilities to contain radio-iodide (131I2) molecules. The encapsulation conditions are investigated applying first principles method to simulate with geometric optimizations and molecular dynamics at 310 K and atmospheric pressure. We find that the n131I2@C60 system, where n = 1, 2, 3…, is stable if the content does not exceed three molecules of radio-iodide. The application of density functional theory allows us to determine that, the nanocapsules content limit is related with the amount of charge that is transferred from the iodine 131I2 molecules to the carbon atoms in the fullerene surface. The Mulliken population analysis reveals that the excess of charge increases the repulsive forces between atoms and the bond length average in the C60 structure. The weakened bonds easily break and will critically damage the encapsulation properties. Additionally, we test the interaction nanocapsules with different amounts of radioactive iodine diatomic molecules content with calcium atoms, and find that only the fullerene containing one radioactive iodine diatomic molecule was able to interact with up to nine atoms of calcium without disrupting or cracking. Other fullerenes with two and three radio iodine diatomic molecules cannot resist the interaction with a single calcium atom without cracking or being broken.

Instability of 3131I2@C60 Ca.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bohunicky B, Mousa SA (2010) Biosensors: the new wave in cancer diagnosis. Nanotechnol Sci Appl 2011(4):1–10. doi:10.2147/NSA.S13465

    Google Scholar 

  2. Mendes RG, Alicja B, Bernd B, Gianaurelio C, Rümmeli MH (2012) Carbon nanostructures as multi-functional drug delivery platforms. J Mater Chem B 2013(1):401–428. doi:10.1039/C2TB00085G. http://pubs.rsc.org/en/content/articlelanding/2013/tb/c2tb00085g#!divAbstract

    Google Scholar 

  3. Cleeland CS, Allen JD, Roberts SA et al (2012) Reducing the toxicity of cancer therapy: recognizing needs, taking action. Nat Rev Clin Oncol 9:471–478. doi:10.1038/nrclinonc.2012.99, http://www.ncbi.nlm.nih.gov/pubmed/22751283

    Article  CAS  Google Scholar 

  4. Kostarelos K (2008) The long and short of carbon nanotube toxicity. Nat Biotechnol 26(7):774–6. doi:10.1038/nbt0708-774, http://www.nature.com/nbt/journal/v26/n7/full/nbt0708-774.html

    Article  CAS  Google Scholar 

  5. Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428. doi:10.1038/nnano.2008.111, http://www.nature.com/nnano/journal/v3/n7/abs/nnano.2008.111.html

    Article  CAS  Google Scholar 

  6. Kroto HW, Heath JR, O'brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163. doi:10.1038/318162a0, http://www.nature.com/nature/journal/v318/n6042/abs/318162a0.html

    Article  CAS  Google Scholar 

  7. Dresselhaus MS et al. (1996). Science of fullerene and carbon nanotubes. Academic, New York. http://www.sciencedirect.com/science/book/9780122218200

  8. Pan Zeng, Xue-Gui Yang, Jing Du (2006). Natural modes of C60 cage via carbon-carbon bonding element. Fract Nano and Eng Mater Struct pp 667–668. doi:10.1007/1-4020-4972-2_330

  9. Johnson JF, Karthick M, Sathiesh Kumar S, Gopu G (2013). Carbon nanotubes as a cradle of impulse for implantable medical devices. The 15th International Conference on Biomedical Engineering vol 43 of the series IFMBE Proceedings pp 456–459. doi:10.1007/978-3-319-02913-9_116

  10. Hong SY, Tobias G (2010) Filled glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485–490. doi:10.1038/nmat2766, http://www.nature.com/nmat/journal/v9/n6/abs/nmat2766.html

    Article  CAS  Google Scholar 

  11. Pauwels EK, Smit JW, Slats A, Bourguignon M, Overbeek F (2000) Health effects of therapeutic use of 131I in hyperthyroidism. Q J Nucl Med 44(4):333–9. http://www.ncbi.nlm.nih.gov/pubmed/11302261

    CAS  Google Scholar 

  12. Braunstein GD (2012) Thyroid Cancer. doi:10.1007/978-1-4614-0875-8

  13. Vicent S, Luis-Ravelo D, Antón I, Hernández I, Martínez S, de las Rivas J, Gúrpide A, Lecanda F (2006). Las metástasis óseas del cáncer. Anales del Sistema Sanitario de Navarra. 29:(2) http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272006000300002

  14. Health Physics Society North Carolina Chapter. NCHPS President Wendy Woehr. http://shop.perkinelmer.com/content/pdfs/english/iodine131.pdf

  15. Grandfield K, McNally EA, Palmquist A, Botton GA, Thomsen P, Engqvist H (2010) Visualizing biointerfaces in three dimensions: electron tomography of the Bone-hydroxyapatite interface. J R Soc Interface. http://rsif.royalsocietypublishing.org/content/early/2010/06/08/rsif.2010.0213.full.pdf

  16. Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124. doi:10.1038/332119a0, http://link.springer.com/chapter/10.1007%2F978-4-431-68132-8_8

    Article  CAS  Google Scholar 

  17. Samachson J (1967) Mechanism for the exchange of the calcium in bone mineral. Nature 216:193–194. doi:10.1038/216193a0, http://www.nature.com.pbidi.unam.mx:8080/nature/journal/v216/n5111/pdf/216193a0.pdf

    Article  CAS  Google Scholar 

  18. Valderrama A, Guzman J (2014) Encapsulation of sodium radio-iodide in fullerene C60. J Mol Model. doi:10.1007/s00894-014-2130-y, http://link.springer.com/article/10.1007%2Fs00894-014-2130-y#

    Google Scholar 

  19. Brenner DW, Harrison JA, White CT, Colton RJ (1991) Molecular dynamics simulations of the nanometer-scale mechanical properties of compressed Buckminsterfullerene. Thin Solid Films doi:10.1016/0040-6090(91)90425-W, http://www.sciencedirect.com/science/article/pii/004060909190425W

  20. Shen H (2006) The compressive mechanical properties of C60 and endohedral M@C60 (M = Si, Ge) fullerene molecules. Elsevier Mater Lett. doi:10.1016/j.matlet.2005.12.077, http://www.researchgate.net/publication/257008289_The_compressive_mechanical_properties_of_C60_and_endohedral_MC60_(MSi_Ge)_fullerene_molecules

    Google Scholar 

  21. Lu J, Zhang X, Zhao X (2000) Relativistic electronic structure calculations on endohedral Gd@C60, La@C60, Gd@C74, and La@C74. Applied Physics A 70(4):461–464. http://link.springer.com/article/10.1007%2Fs003390051068

    Article  CAS  Google Scholar 

  22. Zhong X et al (2010) Can single-atom change affect electron transport properties of molecular nanostructures such as C60 fullerene? J Phys Chem Lett 2010(1):1584–1589. doi:10.1021/jz100360t, http://phy.mtu.edu/pandey/publications/ZPRK2010_0.pdf

    Article  Google Scholar 

  23. Hughes GA (2005) Nanostructure-mediated drug delivery. Nanomedicine: Nanotechnol Biol Med 1(1):22–30. doi:10.1016/j.nano.2004.11.009

  24. Claes-Henrik A (2011). Chemistry of carbon nanostructures: functionalization of carbon nanotubes and synthesis of organometallic fullerene derivatives. Uppsala University http://www.diva-portal.org/smash/get/diva2:444118/FULLTEXT01.pdf

  25. Schlegel HB (2011) Geometry optimization. Wiley, New York. doi:10.1002/wcms.34

  26. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. doi:10.1103/PhysRev.136.B864

    Article  Google Scholar 

  27. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford Univ Press 76–77. https://global.oup.com/academic/product/density-functional-theory-of-atoms-and-molecules-9780195092769?cc=mx&lang=en&

  28. Giannozzi P (2007) Notes on pseudopotential generation. Scuola Normale Superiore di Pisa. http://www.quantum-espresso.org/wp-content/uploads/Doc/pseudo-gen.pdf

  29. Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–79. doi:10.1103/PhysRevB.23.5048

    Article  CAS  Google Scholar 

  30. Troullier N, Martíns JL (1991) Efficient pseudo potentials for plane-wave calculations. Phys Rev B 43:1993–2006. http://www.tddft.org/TDDFT2004/PracticalSessions/papers/troullier_prb43.1993.pdf

    Article  CAS  Google Scholar 

  31. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al (2009) Quantum espresso: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502–19. http://research.cems.umn.edu/wentzcovitch/papers/J._Phys._Condens._Matter_21_395502_(2009).pdf

    Article  Google Scholar 

  32. ADF Program System (2014) Scientific computing & modelling. NV Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.com/Doc/Doc2014/ADF/ADFUsersGuide/page319.html

  33. Methfessel M, Paxton A (1989) High-precision sampling for Brillouin-zone integration in metals. Phys Rev B 40:3616. doi:10.1103/PhysRevB.40.3616

    Article  CAS  Google Scholar 

  34. Roy Dennington, Todd Keith, and John Millam (2009) GaussView V 5.0.9. Semichem Inc, Shawnee Mission, KS. http://www.gaussian.com/g_tech/gv5ref/gv5citation.htm

  35. Björkman T, Granäs O (2011) Adaptive smearing for brillouin zone integration. Int J Quantum Chem 111(5):1025. doi:10.1002/qua.22476, http://www.researchgate.net/publication/225070997_Adaptive_Smearing_for_Brillouin_Zone_Integration

  36. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals. A new molecular dynamics method. J Appl Phys 52:7182. http://adsabs.harvard.edu/abs/1981JAP...52.7182P

    Article  CAS  Google Scholar 

  37. Carey FA, Sundberg RJ (2007) Advanced organic chemistry part A: structure and mechanisms 5th edn. Springer, Heidelberg http://ocw.mit.edu/courses/chemistry/5-12-organic-chemistry-i-spring-2003/lecture-handouts/04.pdf

  38. Hare J et al. (2015) Some properties of carbon and C60. http://www.creative-science.org.uk/propc60.html

  39. Wells AF (1984) Structural inorganic chemistry. Clarendon, Oxford.

  40. Putz MV, Russo N, Sicilia E (2005) About the Mulliken electronegativity in DFT. Theor Chem Accounts 114(1):38–45. doi:10.1007/s00214-005-0641-4, http://link.springer.com/article/10.1007%2Fs00214-005-0641-4#

    Article  CAS  Google Scholar 

  41. Tlahuice Flores, Alfredo y Pérez Tijerina, Eduardo y Mejía Rosales, Sergio (2007). Modos vibracionales de C60 obtenidos mediante el método DFT. Ciencia UANL, 10 (3). http://eprints.uanl.mx/1815/

  42. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–357. http://www.nature.com/nature/journal/v347/n6291/abs/347354a0.html

    Article  Google Scholar 

  43. Schettino V, Pagliaci M, Ciabini L, Cardini G (2001) The vibrational spectrum of fullerene C60. J Phys Chem A 105:11192–11196. doi:10.1021/jp012874t

    Article  CAS  Google Scholar 

  44. Coblentz Society Collection (2009) http://webbook.nist.gov/cgi/cbook.cgi?ID=B6004659&Mask=80#IR-Spec

Download references

Acknowledgements

Special thanks to Consejo Nacional de Ciencia y Tecnología for the financial support given to this work in the national postdoctoral program and to NES-Miztli Supercomputer Center of the Dirección General de Tecnologías de la Información y Comunicación, Universidad Nacional Autónoma de México for their technical support on many of the computations performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Valderrama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valderrama, A., Reynoso, R., Gómez, R.W. et al. Self-stability of C60 nanocapsules with radio-iodide content and its interaction with calcium atoms. J Mol Model 22, 28 (2016). https://doi.org/10.1007/s00894-015-2898-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2898-4

Keywords

Navigation