Skip to main content
Log in

Theoretical investigations on stability of pyridylpentazoles, pyridazylpentazoles, triazinylpentazoles, tetrazinylpentazoles, and pentazinylpentazole searching for a replacement of phenylpentazole as N5 source

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Stabilities of pyridylpentazoles, pyridazylpentazoles, triazinylpentazoles, tetrazinylpentazoles, and pentazinylpentazole were studied using density functional theory to assess their potentials as the source of pentazole anion (N5 ) for replacement of phenylpentazole (PhN 5 ). Replacing the aryl group of PhN 5 by six-member heterocycle weakens pentazole ring. Compared to PhN 5 , title molecules have longer N-N bonds and lower activation energy (E a,1) needed for the N5 ring breaking. E a,1 decreases with the increasing number of nitrogen atoms of heterocycle. The ortho nitrogen of heterocycle most obviously lowers the stability of pentazole. The central C-N bond dissociation energies (BDEs) of title molecules are lower than that of PhN 5 . For the molecule with 0~1 ortho-nitrogen, H rearrangement happens during the central C-N bond breaking. The energy (E a,2) required for H rearrangement is considerably smaller than the corresponding BDE. ΔE a,2 (E a,2(PhN5) - E a,2 = 7.5~35.7 kJ mol-1) is larger than ΔE a,1 (E a,2(PhN5) - E a,2 = 4.6~15.5 kJ mol-1), while ΔE a,2/E a,2(PhN5) (2~9.5 %) is smaller than ΔE a,1/E a,1(PhN5) ( 4.4~15.0 %). The larger ΔE a,1/E a,1(PhN5) suggests that title molecules can not be the better N5 than PhN 5 .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) N5 +: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 38(13–14):2004–2009

  2. Gagliardi L, Pyykkö P (2002) η5-N5 -Metal-η7-N7 3−: a new class of compounds. J Phys Chem A 106(18):4690–4694

  3. Nguyen MT (2006) Polynitrogen compounds: 1. Structure and stability of N4 and N5 systems. Coord Chem Rev 244(1–2):93–113

    Google Scholar 

  4. Belau L, Haas Y, Zilberg S (2004) Formation of the cyclo-pentazolate N5 anion by high-energy dissociation of phenylpentazole anions. J Phys Chem A 108(52):11715–11720

  5. Carlqvist P, Östmark H, Brinck T (2004) The stability of arylpentazoles. J Phys Chem A 108:7463–7467

  6. Strout DL (2004) Isomer stability of N24, N30, and N36 cages: cylindrical versus spherical structure. J Phys Chem A 108(13):2555–2558

  7. Wang L, Mezey PG (2005) Predicted high-energy molecules: helical all-nitrogen and helical nitrogen-rich ring clusters. J Phys Chem A 109(14):2341–2343

  8. Wua HS, Xua XH, Jiao H (2005) Structure and stability of perazido substituted azacycloalkanes, Nn(N3)n. Chem Phys Lett 412(4–6):299–302

  9. Colvin KD, Strout DL (2005) Stability of nitrogen-oxygen cages N12O2, N14O2, N14O3, and N16O4. J Phys Chem A 109(35):8011–8015

  10. Vij A, Wilson WW, Vij V, Tham FS, Sheehy JA, Christe KO (2001) Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5 +. J Am Chem Soc 123(26):6308–6313

    Article  CAS  Google Scholar 

  11. Cacace F, Petris G, Troiani A (2002) Experimental detection of tetranitrogen. Science 295:480–481

  12. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 . Angew Chem 114(16):3177–3180

    Article  Google Scholar 

  13. Östmark H, Wallin S, Brinck T, Carlqvist P, Claridge R, Hedlund E, Yudina L (2003) Detection of pentazolate anion (cyclo-N5 ) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem Phys Lett 379(5):539–546

    Article  Google Scholar 

  14. Fau S, Wilson KJ, Bartlett RJ (2002) On the stability of N5 + N5 . J Phys Chem A 106(18):4639–4644

    Article  CAS  Google Scholar 

  15. Lein M, Frunzke J, Timoshkin A, Frenking G (2001) Iron bispentazole Fe (η5-N5)2, a theoretically predicted high‐energy compound: structure, bonding analysis, metal–ligand bond strength and a comparison with the isoelectronic ferrocene. Chem Eur J 7(19):4155–4163

    Article  CAS  Google Scholar 

  16. Tang L, Guo H, Peng J, Ning P, Li K, Li J, Gu J, Li Q (2014) Structure and bonding of novel paddle-wheel diiridium polynitrogen compounds: a stronger iridiumeiridium bonding by density functional theory. J Organomet Chem 769:94–99

  17. Zhang X, Yang J, Lu M, Gong X (2014) Theoretical studies on stability and pyrolysis mechanism of salts formed by N5 and metallic cations Na+, Fe2+ and Ni2+. Struct Chem 1–8

  18. Zhao JF, Li N, Li QS (2003) A kinetic stability study of MN5 (M = Li, Na, K, and Rb). Theor Chem Accounts 110(1):10–18

    Article  CAS  Google Scholar 

  19. Zhang XH, Li S, Li QS (2006) Characterizations of novel binuclear alkaline-earth metal compounds: M2n-N5)2 (M = Be and Mg, n = 1, 2; M = Ca, n = 2, 5). J Theor Comput Chem 05:475–487

    Article  Google Scholar 

  20. Tang LH, Guo HB, Li QS, Peng JH, Gu JJ, Xiao LB (2014) Characterizations of novel binuclear transition metal polynitrogen compounds: M2(N5)4 (M = Co, Rh and Ir). Adv Mater Res 924:233–252

    Article  CAS  Google Scholar 

  21. Zhang X, Yang J, Lu M, Gong X (2015) Structure, stability and intramolecular interaction of M (N5)2 (M = Mg, Ca, Sr and Ba): a theoretical study. RSC Adv 5(28):21823–21830

    Article  CAS  Google Scholar 

  22. Cui J, Zhang Y, Zhao F, Yang J, Shen G, Xua Y (2009) HB(N5)3M (M = Li, Na, K, and Rb): a new kind of pentazolides as HEDMs. Prog Nat Sci 19:41–45

  23. Benin V, Kaszynski P, Radziszewski G (2002) Arylpentazoles revisited: experimental and theoretical studies of 4-hydroxyphenylpentazole and 4-oxophenylpentazole anion. J Org Chem 67(4):1354–1358

  24. Butler RN, Hanniffy JM, Stephens JC, Burke LA (2008) A ceric ammonium nitrate N-dearylation of N-p-anisylazoles applied to pyrazole, triazole, tetrazole, and pentazole rings: release of parent azoles. generation of unstable pentazole, HN5/N5 , in solution. J Org Chem 73(4):1354–1364

    Article  CAS  Google Scholar 

  25. Zhang XL, Yang JQ, Lu M, Gong XD (2014) Theoretical studies on the stability of phenylpentazole and its substituted derivatives of–OH, −OCH3, −OC2H5 and –N(CH3)2. RSC Adv 4(99):56095–56101

  26. Zhang X, Yang J, Lu M, Gong X (2015) Pyridylpentazole and its derivatives: a new source of N5 ? RSC Adv 5(35):27699–27705

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004). Gaussian 03, revision C02. Gaussian Inc, Wallingford

  28. Simón L, Goodman JM (2011) How reliable are DFT transition structures? Comparison of GGA, hybrid-meta-GGA and meta-GGA functionals. Org Biomol Chem 9(3):689–700

    Article  Google Scholar 

  29. Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-nitrotetrazole-3 N-oxide. J Mater Chem A 2(32):13006–13015

    Article  CAS  Google Scholar 

  30. Yu T, Zheng J, Truhlar DG (2011) Multi-structural variational transition state theory. Kinetics of the 1, 4-hydrogen shift isomerization of the pentyl radical with torsional anharmonicity. Chem Sci 2(11):2199–2213

    Article  CAS  Google Scholar 

  31. Franzen S, Skalski B, Bartolotti L, Delley B (2014) The coupling of tautomerization to hydration in the transition state on the pyrimidine photohydration reaction path. Phys Chem Chem Phys

  32. Benson SW (1976) Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters. Wiley, New York

    Google Scholar 

  33. Yao XQ, Hou XJ, Wu GS, Xu YY, Xiang HW, Jiao H, Li YW (2002) Estimation of CC bond dissociation enthalpies of large aromatic hydrocarbon compounds using DFT methods. J Phys Chem A 106(31):7184–7189

    Article  CAS  Google Scholar 

  34. Shao J, Cheng X, Yang X (2005) Density functional calculations of bond dissociation energies for removal of the nitrogen dioxide moiety in some nitroaromatic molecules. J Mol Struct (THEOCHEM) 755(1):127–130

    Article  CAS  Google Scholar 

  35. Fan XW, Ju XH, Xia QY, Xiao HM (2008) Strain energies of cubane derivatives with different substituent groups. J Hazard Mater 151(1):255–260

    Article  CAS  Google Scholar 

  36. Kamijo S, Jin T, Huo Z, Gyoung YS, Shim JG, Yamamoto Y (2003) Tetrazole synthesis via the palladium-catalyzed three component coupling reaction. Mol Divers 6(3–4):181–192

  37. Geiger U, Elyashiv A, Fraenkel R, Zilberg S, Haas Y (2013) The Raman spectrum of dimethylaminophenyl pentazole (DMAPP). Chem Phys Lett 556:127–131

    Article  CAS  Google Scholar 

  38. Portius P, Davis M, Campbell R, Hartl F, Zeng Q, Meijer AJ, Towrie M (2013) Dinitrogen release from arylpentazole: a picosecond time-resolved infrared, spectroelectrochemical, and DFT computational study. J Phys Chem A 117(48):12759–12769

  39. Geiger U, Haas Y, Grinstein D (2014) The photochemistry of an aryl pentazole in liquid solutions: the anionic 4-oxidophenylpentazole (OPP). J Photochem Photobiol A Chem 277:53–61

  40. Li QS, Hu XG, Xu WG (1998) Structure and stability of N 7 cluster. Chem Phys Lett 287(1):94–99

    Article  CAS  Google Scholar 

  41. Canneaux S, Bohr F, Hénon E (2014) KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 35:82–93

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuedong Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 1996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Gong, X. Theoretical investigations on stability of pyridylpentazoles, pyridazylpentazoles, triazinylpentazoles, tetrazinylpentazoles, and pentazinylpentazole searching for a replacement of phenylpentazole as N5 source. J Mol Model 21, 318 (2015). https://doi.org/10.1007/s00894-015-2867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2867-y

Keywords

Navigation