Skip to main content
Log in

Mechanistic insights into small molecule activation induced by ligand cooperativity in PCcarbeneP nickel pincer complexes: a quantum chemistry study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Mechanisms for the activation of water, ammonia, and other small molecules by the PCcarbeneP nickel pincer complex were studied computationally with the aid of density functional theory. The calculation results indicate that the strongly donating, nucleophilic carbene center can engage in a variety of heterolytic splitting of E−H (E=H, C, N, O) bonds, some of which are reversible. The cleavage of E−H bonds across the Ni=C bond represents a new mode of bond activation by ligand cooperativity in nickel pincer complex. On the basis of the calculations, we also demonstrate that reversible H2 activation across the Ir=C bond via the PCcarbeneP iridium pincer complex was observed in the experiments, while other E−H (E=C, N, O) bonds were not activated. Our calculations are in good agreement with experimental observations and could provide new insights into ligand cooperativity in nickel pincer complexes.

Synopsis TOC

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. van Koten G, Albrecht M (2001) Angew Chem Int Ed 40:3750–3781

    Article  Google Scholar 

  2. van der Boom ME, Misltein D (2003) Chem Rev 103:1759–1792

    Article  Google Scholar 

  3. Liu F, Pak EB, Singh B, Jensen CM, Goldman AS (1999) J Am Chem Soc 121:4086–4087

    Article  CAS  Google Scholar 

  4. Liu F, Goldman AS (1999) Chem Commun 655–656

  5. Peris E, Loch JA, Mata J, Crabtree RH (2001) Chem Commun 201–202

  6. Grundemann S, Albrecht M, Loch RH, Faller JW, Crabtree RH (2001) Organometallics 20:5485–5488

    Article  Google Scholar 

  7. Bergbreiter DE, Osburn PL, Liu YS (1999) J Am Chem Soc 121:9531–9538

    Article  CAS  Google Scholar 

  8. Zim D, Gruber AS, Ebeling G, Dupont J, Monteiro AL (2000) Org Lett 2:2881–2884

    Article  CAS  Google Scholar 

  9. Crabtree RH, Mihelcic JM, Quirk JM (1979) J Am Chem Soc 101:7738–7740

    Article  CAS  Google Scholar 

  10. Burk MJ, Crabtree RH (1987) J Am Chem Soc 109:8025–8032

    Article  CAS  Google Scholar 

  11. Moulton CJ, Shaw BL (1976) J Chem Soc Dalton Trans 1020–1024

  12. Gusev DG, Lough AJ (2002) Organometallics 21:2601–2603

    Article  CAS  Google Scholar 

  13. Ozerov OV, Guo C, Fan L, Foxman BM (2004) Organometallics 23:5573–5580

    Article  CAS  Google Scholar 

  14. Liang LC, Chien PS, Huang YL (2006) J Am Chem Soc 128:15562–15563

    Article  CAS  Google Scholar 

  15. Liang LC, Chien PS, Lee PY (2008) Organometallics 27:3082–3093

    Article  CAS  Google Scholar 

  16. Zhao J, Goldman AS, Hartwig JF (2005) Science 307:1080–1082

    Article  CAS  Google Scholar 

  17. Morales-Morales D, Lee DW, Wang Z, Jensen CM (2001) Organometallics 20:1144–1147

    Article  CAS  Google Scholar 

  18. Gunanathan C, Milstein D (2011) Acc Chem Res 44:588–602

    Article  CAS  Google Scholar 

  19. Gregor LC, Chen CH, Fafard CM, Fan L, Guo CY, Foxman BM, Gusev DG, Ozero OV (2010) Dalton Trans 39:3195–3202

    Article  CAS  Google Scholar 

  20. Burford RJ, Piers WE, Parvez M (2012) Organometallics 31:2949–2952

    Article  CAS  Google Scholar 

  21. van der Vlugt JI (2012) Eur J Inorg Chem 363–375

  22. van der Vlugt JI, Lutz M, Pidko EA, Vogt D, Spek AL (2009) Dalton Trans 1016–1023

  23. Gutsulyak DV, Piers WE, Borau–Garcia J, Parvez M (2013) J Am Chem Soc 135:11776–11779

    Article  CAS  Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  25. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Phys Rev B 38:3098–3100

    Article  CAS  Google Scholar 

  28. Xie HJ, Sun Q, Ren GR, Cao ZX (2014) J Org Chem 79:11911–11920, For nickel

    Article  CAS  Google Scholar 

  29. Xie HJ, Zhao LJ, Yang L, Lei QF, Fang WJ, Xiong CH (2014) J Org Chem 79:4517–4527

    Article  CAS  Google Scholar 

  30. Li Y, Lin ZY (2013) Organometallics 32:3003–3011

    Article  CAS  Google Scholar 

  31. Li T, Jones WD (2011) Organometallics 30:547–555

    Article  CAS  Google Scholar 

  32. Wu JG, Hazari N, Incarvito CD (2011) Organometallics 30:3142–3150

    Article  CAS  Google Scholar 

  33. Normand AT, Hawkes KJ, Clement ND, Cavell KJ, Yates BF (2007) Organometallics 26:5352–5363

    Article  CAS  Google Scholar 

  34. Grochowski MR, Li T, Brennessel WW, Jones WD (2010) J Am Chem Soc 132:12412–12421

    Article  CAS  Google Scholar 

  35. West AL, John FS, Lopes PEM, MacKerell AD Jr, Pozharski E, Michel SLJ (2010) J Am Chem Soc 132:14447–14456

    Article  CAS  Google Scholar 

  36. Iluc VM, Miller AJM, Anderson JS, Monreal MJ, Mehn MP, Hillhouse GL (2011) J Am Chem Soc 133:13055–13063, For iridium

    Article  CAS  Google Scholar 

  37. Sieh D, Burger P (2013) J Am Chem Soc 135:3971–3982

    Article  CAS  Google Scholar 

  38. Chang YH, Nakajima Y, Tanaka H, Yoshizawa K, Ozawa F (2013) J Am Chem Soc 135:11791–11794

    Article  CAS  Google Scholar 

  39. Yang W, Wang DW, Song QJ, Zhang S, Wang Q, Ding YQ (2013) Organometallics 32:4130–4135

    Article  CAS  Google Scholar 

  40. Prakash O, Singh P, Mukherjee G, Singh AK (2012) Organometallics 31:3379–3388

    Article  CAS  Google Scholar 

  41. Meredith JM, Robinson R Jr, Goldberg KI, Kaminsky E, Heinekey DM (2012) Organometallics 31:1879–1887

    Article  CAS  Google Scholar 

  42. Check CE, Faust TO, Bailey JM, Wright BJ, Gilbert TM, Sunderlin LS (2001) J Phys Chem A 105:8111–8116

    Article  CAS  Google Scholar 

  43. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  44. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmenn R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  45. Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmenn R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:237–240

    Article  Google Scholar 

  46. Fukui K (1970) J Phys Chem 74:4161–4163

    Article  CAS  Google Scholar 

  47. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  48. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  49. Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

    Article  CAS  Google Scholar 

  50. Reed AE, Curtiss LA, Weinhold F. Chem Rev 88:899–926

  51. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford CT

    Google Scholar 

  52. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  53. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  54. Mindiola DJ, Hillhouse GL (2002) J Am Chem Soc 124:9976–9977

    Article  CAS  Google Scholar 

  55. Ohnishi YY, Nakao Y, Sato H, Sakaki S (2007) J Phys Chem A 111:7915–7924

    Article  CAS  Google Scholar 

  56. Zeng GX, Sakaki S (2013) Inorg Chem 52:2844–2853

    Article  CAS  Google Scholar 

  57. Zeng GX, Guo Y, Li SH (2009) Inorg Chem 48:10257–10263

    Article  CAS  Google Scholar 

  58. Campora J, Palma P, del Rio D, Conejo MM, Alvarez E (2004) Organometallics 23:5653–5655

    Article  CAS  Google Scholar 

  59. Schmeier TJ, Nova A, Hazari N, Maseras F (2012) Chem Eur J 18:6915–6927

    Article  CAS  Google Scholar 

  60. Adhikari D, Mossin S, Basuli F, Dible BR, Chipara M, Fan H, Huffman JC, Meyer K, Mindiola DJ (2008) Inorg Chem 47:10479–10490

    Article  CAS  Google Scholar 

  61. Campora J, Palma P, del Rio D, Alvarez E (2004) Organometallics 23:1652–1655

    Article  CAS  Google Scholar 

  62. Castonguay A, Beauchamp AL, Zargarian D (2009) Inorg Chem 48:3177–3184

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (21203166, 21473157), the Natural Science Foundation of Zhejiang Province (Y4100620), and the Food Science and Engineering the Most Important Discipline of Zhejiang Province (JYTsp2014111). We thank the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University) for providing computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu-Jun Xie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(GIF 148 kb)

High Resolution Image (TIFF 997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CC., Liu, QL., Wu, ZY. et al. Mechanistic insights into small molecule activation induced by ligand cooperativity in PCcarbeneP nickel pincer complexes: a quantum chemistry study. J Mol Model 21, 242 (2015). https://doi.org/10.1007/s00894-015-2792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2792-0

Keywords

Navigation