Skip to main content
Log in

Superalkali atoms bonding to the phenalenyl radical: structures, intermolecular interaction and nonlinear optical properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Due to unpaired electrons, both radicals and superalkali are investigated widely. In this work, two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. Why are they interesting? Firstly, for Li3O-PLY and Li3-PLY, although the charge transfer between superalkali atoms and PLY is similar, the sandwich-like charge distribution for Li3O-PLY causes a smaller dipole moment than that of Li3-PLY. Secondly, their UV–vis absorption show that the maximum wavelengths for Li3O-PLY and Li3-PLY display a bathochromic shift compared to PLY. Moreover, Li3-PLY has two new peaks at 482 and 633 nm. Significantly, the β 0 values of Li3-PLY (4943–5691 a.u.) are much larger than that of Li3O-PLY (225–347 a.u.). Further, the β HRS values of Li3O-PLY decrease slightly while β HRS of Li3-PLY increase dramatically with increasing frequency. It is our expectation that these results might provide beneficial information for theoretical and experimental studies on complexes with superalkali and PLY radicals.

Two interesting complexes (Li3O-PLY and Li3-PLY) were constructed by phenalenyl radical and superalkali atoms. We explore their structures, Wiberg bond indices, interaction energies and the static first hyperpolarizabilities (β 0). The β 0 values of Li3-PLY (4943–5691 a.u.) were much larger than those of Li3O-PLY (225–347 a.u.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suzuki S, Morita Y, Fukui K, Sato K, Shiomi D, Takui T, Nakasuji K (2006) Aromaticity on the pancake-bonded dimer of neutral phenalenyl radical as studied by MS and NMR spectroscopies and NICS analysis. J Am Chem Soc 128:2530

    Article  CAS  Google Scholar 

  2. Huang J, Kertesz M (2007) Intermolecular covalent π−π bonding interaction indicated by bond distances, energy bands, and magnetism in biphenalenyl biradicaloid molecular crystal. J Am Chem Soc 129:1634

    Article  CAS  Google Scholar 

  3. Craciun S, Donald KJ (2009) Radical bonding: structure and stability of bis(phenalenyl) complexes of divalent metals from across the periodic table. Inorg Chem 48:5810

    Article  CAS  Google Scholar 

  4. Small D, Rosokha SV, Kochi JK, Head-Gordon M (2005) Characterizing the dimerizations of phenalenyl radicals by ab initio calculations and spectroscopy: σ-bond formation versus resonance π-stabilization. J Phys Chem A 109:11261

    Article  CAS  Google Scholar 

  5. Nakano M, Takebe A, Kishi R, Fukui H, Minami T, Kubota K, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2008) Intermolecular interaction effects on the second hyperpolarizability of open-shell singlet diphenalenyl radical dimer. Chem Phys Lett 454:97

    Article  CAS  Google Scholar 

  6. Chi X, Itkis ME, Patrick BO, Barclay TM, Reed RW, Oakley RT, Cordes AW, Haddon RC (1999) The first phenalenyl-based neutral radical molecular conductor. J Am Chem Soc 121:10395

    Article  CAS  Google Scholar 

  7. Itkis M, Chi X, Cordes A, Haddon R (2002) Magneto-opto-electronic bistability in a phenalenyl-based neutral radical. Science 296:1443

    Article  CAS  Google Scholar 

  8. Cyrański MK, Havenith RWA, Dobrowolski MA, Gray BR, Krygowski TM, Fowler PW, Jenneskens LW (2007) The phenalenyl motif: a magnetic chameleon. Chem Eur J 13:2201

    Article  Google Scholar 

  9. Ueda A, Wasa H, Suzuki S, Okada K, Sato K, Takui T, Morita Y (2012) Chiral stable phenalenyl radical: synthesis, electronic-spin structure, and optical properties of [4]helicene-structured diazaphenalenyl. Angew Chem-Int Edit 51:6691

    Article  CAS  Google Scholar 

  10. Sarkar A, Itkis ME, Tham FS, Haddon RC (2011) Synthesis, structure, and physical properties of a partial π-stacked phenalenyl-based neutral radical molecular conductor. Chem Eur J 17:11576

    Article  CAS  Google Scholar 

  11. Li Z-R, Wang F-F, Wu D, Li Y, Chen W, Sun X-Y, Gu FL, Aoki Y (2006) Royal crown-shaped electride Li3-N3-Be containing two superatoms: new knowledge on aromaticity. J Comput Chem 27:986

    Article  CAS  Google Scholar 

  12. Wang B-Q, Li Z-R, Wu D, Wang F-F (2007) Structures and static electric properties of novel alkalide anions F-Li+Li- and FLi3 +Li3. J Phys Chem A 111:6378

    Article  CAS  Google Scholar 

  13. Tong J, Li Y, Wu D, Wu Z-J (2012) Theoretical study on polynuclear superalkali cations with various functional groups as the central core. Inorg Chem 51:6081

    Article  CAS  Google Scholar 

  14. Tong J, Wu Z, Li Y, Wu D (2013) Prediction and characterization of novel polynuclear superalkali cations. Dalton T 42:577

    Article  CAS  Google Scholar 

  15. Cochran E, Meloni G (2014) Hypervalence in monoxides and dioxides of superalkali clusters. J Chem Phys 140:204–319

    Article  Google Scholar 

  16. Sun W-M, Fan L-T, Li Y, Liu J-Y, Wu D, Li Z-R (2014) On the potential application of superalkali clusters in designing novel alkalides with large nonlinear optical properties. Inorg Chem 53:6170

    Article  CAS  Google Scholar 

  17. Yokoyama K, Tanaka H, Kudo H (2001) Structure of hyperlithiated Li3O and evidence for electronomers. J Phys Chem A 105:4312

    Article  CAS  Google Scholar 

  18. Đustebek J, Veličković S, Veljković F, Veljković M (2012) Production of heterogeneous superalkali clusters LinF (n = 2–6) by knudesn-cell mass spectrometry. Dig J Nano Mater Bios 7:1365

    Google Scholar 

  19. Li Y, Wu D, Li Z-R (2008) Compounds of superatom clusters: preferred structures and significant nonlinear optical properties of the BLi6-X (X = F, LiF2, BeF3, BF4) motifs. Inorg Chem 47:9773

    Article  CAS  Google Scholar 

  20. Tong J, Li Y, Wu D, Li Z-R, Huang X-R (2011) Ab initio investigation on a new class of binuclear superalkali cations M2Li2k+1+ (F2Li3 +, O2Li5 +, N2Li7 +, and C2Li9 +). J Phys Chem A 115:2041

    Article  CAS  Google Scholar 

  21. Kudo H, Wu CH, Ihle HR (1978) Mass-spectrometric study of the vaporization of Li2O(s) and thermochemistry of gaseous LiO, Li2O, Li3O, and Li2O2. J Nucl Mater, J 78:380

    Article  CAS  Google Scholar 

  22. Wu CH, Kudoa H, Ihle HR (1979) Thermochemical properties of gaseous Li3O and Li2O2. J Chem Phys 70:1815

    Article  CAS  Google Scholar 

  23. Alexandrova AN, Boldyrev AI (2003) σ-Aromaticity and σ-antiaromaticity in alkali metal and alkaline earth metal small clusters. J Phys Chem A 107:554

    Article  CAS  Google Scholar 

  24. Karplus M, Porter RN (1970) Atoms and molecules; an introduction for students of physical chemistry. Benjamin, New York

    Google Scholar 

  25. Zhong R-L, Zhang J, Muhammad S, Hu Y-Y, Xu H-L, Su Z-M (2011) Boron/nitrogen substitution of the central carbon atoms of the biphenalenyl diradical π dimer: a novel 2e–12c bond and large NLO responses. Chem Eur J 17:11773

    Article  CAS  Google Scholar 

  26. Tian Y-H, Huang J, Kertesz M (2010) Fluxional [sigma]-bonds of 2,5,8-tri-tert-butyl-1,3-diazaphenalenyl dimers: stepwise [3,3], [5,5] and [7,7] sigmatropic rearrangements via [small pi]-dimer intermediates. Phys Chem Chem Phys 12:5084

    Article  CAS  Google Scholar 

  27. Tian Y-H, Kertesz M (2010) Is there a lower limit to the CC bonding distances in neutral radical π-dimers? The case of phenalenyl derivatives. J Am Chem Soc 132:10648

    Article  CAS  Google Scholar 

  28. Sini G, Sears JS, Brédas J-L (2011) Evaluating the performance of DFT functionals in assessing the interaction energy and ground-state charge transfer of donor/acceptor complexes:tetrathiafulvalene − tetracyanoquinodimethane (TTF − TCNQ) as a model case. J Chem Theory Comput 7:602

    Article  CAS  Google Scholar 

  29. Zhong R-L, Xu H-L, Sun S-L, Qiu Y-Q, Zhao L, Su Z-M (2013) Theoretical investigation on the 2e/12c bond and second hyperpolarizability of azaphenalenyl radical dimers: strength and effect of dimerization. J Chem Phys 139, 124314

    Article  Google Scholar 

  30. Chen S, Sun S-L, Wu H-Q, Xu H-L, Zhao L, Su Z-M (2014) Superatoms (Li3O and BeF3) induce phenalenyl radicalπ–dimer: fascinating interlayer charge-transfer and large NLO responses. Dalton T 43:12657

    Article  CAS  Google Scholar 

  31. Alkorta I, Elguero J (1998) Theoretical study of strong hydrogen bonds between neutral molecules: the case of amine oxides and phosphine oxides as hydrogen bond acceptors. J Phys Chem A 103:272–279

    Article  Google Scholar 

  32. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  33. Chen W, Li Z-R, Wu D, Li Y, Sun C-C, Gu FL (2005) The structure and the large nonlinear optical properties of Li@Calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  34. Xu H-L, Li Z-R, Wu D, Wang B-Q, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967

    Article  CAS  Google Scholar 

  35. Muhammad S, Xu H, Liao Y, Kan Y, Su Z (2009) Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response. J Am Chem Soc 131:11833

    Article  CAS  Google Scholar 

  36. Dongdong Qi. NLO Calculator, Version 0.2. University of Science and Technology Beijing, Beijing 100083, China

  37. Zhang L, Qi D, Zhao L, Chen C, Bian Y, Li W (2012) Density functional theory study on subtriazaporphyrin derivatives: dipolar/octupolar contribution to the second order nonlinear optical activity. J Phys Chem A 116:10249

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02; Gaussian, Inc. Wallingford, CT

  39. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664

    Article  CAS  Google Scholar 

  40. Oudar JL (1977) Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds. J Chem Phys 67:446

    Article  CAS  Google Scholar 

  41. Gorelsky SI (2009) AOMix version 6.46: program for molecular orbital analysis, University of Ottawa. Available at: http://www.sg-chem.net/

  42. Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from National Science Foundation of China (NSFC) (21003019, 21473026), the Science and Technology Development Planning of Jilin Province (201201062 and 20140101046JC), the Computing Center of Jilin Province provided essential support and H.-L.X. acknowledges support from the Hong Kong Scholars Program And Project funded by the China Postdoctoral Science Foundation (2014 M560227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Liang Xu or Shi-Ling Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Xu, HL., Sun, SL. et al. Superalkali atoms bonding to the phenalenyl radical: structures, intermolecular interaction and nonlinear optical properties. J Mol Model 21, 209 (2015). https://doi.org/10.1007/s00894-015-2750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2750-x

Keywords

Navigation