Skip to main content
Log in

First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Escalating demand for sustainable energy resources, because of the rapid exhaustion of conventional energy resources as well as to maintain the environmental level of carbon dioxide (CO2) to avoid its adverse effect on the climate, has led to the exploitation of photovoltaic technology manifold more than ever. In this regard organic materials have attracted great attention on account of demonstrating their potential to harvest solar energy at an affordable rate for photovoltaic technology. 2-vinyl-4,5-dicyanoimidazole (vinazene) is considered as a suitable material over the fullerenes for photovoltaic applications because of its particular chemical and physical nature. In the present study, DFT approaches are employed to provide an exposition of optoelectronic properties of vinazene molecule and molecular crystal. To gain insight into its properties, different forms of exchange correlation energy functional/potential such as LDA, GGA, BLYP, and BL3YP are used. Calculated electronic structure of vinazene molecule has been displayed via HOMO-LUMO isosurfaces, whereas electronic structure of the vinazene molecular crystal, via electronic band structure, is presented. The calculated electronic and optical properties were analyzed and compared as well. Our results endorse vinazene as a suitable material for organic photovoltaic applications.

Vinazene molecule and molecular crystalᅟ

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goffman E (2008) ProQuest

  2. Dahl S, Chorkendorff I (2012) Nat Mater 11:100

    Article  CAS  Google Scholar 

  3. Polman A, Atwater HA (2012) Nat Mater 11:174

    Article  CAS  Google Scholar 

  4. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864

    Article  CAS  Google Scholar 

  5. Fan Z, Javey A (2008) Nat Mater 7:835–836

    Article  CAS  Google Scholar 

  6. Liu Z, Xu J, Chen D, Shen G (2015) Chem Soc Rev 44:161

    Article  CAS  Google Scholar 

  7. Guo X, Baumgarten M, Müllen K (2013) Prog Polym Sci 38:1832

    Article  CAS  Google Scholar 

  8. Ryyan Khan M, Ray B, Alam MA (2014) Solar Energy Mater Solar Cells 120 Part B(716)

  9. Zhao G, He Y, Li Y (2010) Adv Mater 22:4355

    Article  CAS  Google Scholar 

  10. Stratakis E, Stylianakis MM, Koudoumas E, Kymakis E (2013) Nanoscale 5:4144

    Article  CAS  Google Scholar 

  11. Woo CH, Holcombe TW, Unruh DA, Sellinger A, Frechet JMJ (2010) Chem Mater 22:1673

    Article  CAS  Google Scholar 

  12. Lim E, Lee S, Lee KK (2012) Mol Cryst Liq Cryst 565

  13. Bloking JT, Han X, Higgs AT, Kastrop JP, Pandey L, Norton JE, Risko C, Chen CE, Breedas JL, McGehee MD, Sellinger A (2011) Chem Mater 23:5484

    Article  CAS  Google Scholar 

  14. Shin RYC, Kietzke T, Sudhakar S, Dodabalapur A, Chen Z-K, Sellinger A (2007) Chem Mater 19:1892–1894

    Article  CAS  Google Scholar 

  15. Sahika Inal MC, Sellinger A, Neher D (2009) Macromol Rapid Commun 30:1263–1268

    Article  Google Scholar 

  16. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  17. Delley B (2000) J Chem Phys 113(18):7756-7764

  18. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  19. Wang Y, Perdew JP (1991) Phys Rev B 45(23):13244

    Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  21. Becke AD (1988) J Chem Phys 88:2547

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Hehre WJ, Radom L, Schleyer PVR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

  24. Rasmussen PG, Reybuck SE, Johnson DM, Lawton RG (2000) United States Patent-US006096899A

  25. Johnson DM, Rasmussen PG (2000) Macromolecules 33(23):8597–8603

    Article  CAS  Google Scholar 

  26. Fukui K, Yonezawa T, Shingu H (1952) J Chem Phys 20(8):722–725

    Article  CAS  Google Scholar 

  27. Boese AD, Handy NC (2001) J Chem Phys 114(13):5497–5503

    Article  CAS  Google Scholar 

  28. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46(11):6671–6687

    Article  CAS  Google Scholar 

  29. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200–1211

    Article  CAS  Google Scholar 

  30. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  31. Gutiérrez-Pérez R-M, Flores-Holguín N, Glossmann-Mitnik D, Rodriguez-Valdez L-M (2011) J Mol Model 17:1963–1972

    Article  Google Scholar 

  32. B. A. D (1993) J Chem Phys 98:5648–5647

  33. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souraya Goumri-Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad, M., Ahmed, R., Shaari, A. et al. First principles investigations of vinazene molecule and molecular crystal: a prospective candidate for organic photovoltaic applications. J Mol Model 21, 27 (2015). https://doi.org/10.1007/s00894-015-2582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2582-8

Keywords

Navigation