Skip to main content
Log in

Theoretical study of the reaction mechanism of CH3NO2 with NO2, NO and CO: the bimolecular reactions that cannot be ignored

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The intriguing decompositions of nitro-containing explosives have been attracting interest. While theoretical investigations have long been concentrated mainly on unimolecular decompositions, bimolecular reactions have received little theoretical attention. In this paper, we investigate theoretically the bimolecular reactions between nitromethane (CH3NO2)—the simplest nitro-containing explosive—and its decomposition products, such as NO2, NO and CO, that are abundant during the decomposition process of CH3NO2. The structures and potential energy surface (PES) were explored at B3LYP/6-31G(d), B3P86/6-31G(d) and MP2/6-311 + G(d,p) levels, and energies were refined using CCSD(T)/cc-pVTZ methods. Quantum chemistry calculations revealed that the title reactions possess small barriers that can be comparable to, or smaller than, that of the initial decomposition reactions of CH3NO2. Considering that their reactants are abundant in the decomposition process of CH3NO2, we consider bimolecular reactions also to be of great importance, and worthy of further investigation. Moreover, our calculations show that NO2 can be oxidized by CH3NO2 to NO3 radical, which confirms the conclusion reached formerly by Irikura and Johnson [(2006) J Phys Chem A 110:13974–13978] that NO3 radical can be formed during the decomposition of nitramine explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chakraborty D, Muller RP, Dasgupta S, Goddard WA III (2000) J Phys Chem A 104:2261–2272

    Article  CAS  Google Scholar 

  2. Guo F, Cheng XL, Zhang H (2012) J Phys Chem A 116:3514–3520

    Article  CAS  Google Scholar 

  3. Guo F, Cheng XL, Zhang H (2009) J Theor Comput Chem 9:315–325

    Article  Google Scholar 

  4. Hu WF, He TJ, Chen DM, Liu FC (2002) J Phys Chem A 106:7294–7303

    Article  CAS  Google Scholar 

  5. Rom N, Zybin SV, van Duin ACT, Goddard WA III, Zeiri Y, Katz G, Kosloff R (2011) J Phys Chem A 115:10181–10202

    Article  CAS  Google Scholar 

  6. Citroni M, Datchi F, Bini R, Vaira MD, Pruzan P (2008) J Phys Chem B 112:1095–1103

    Article  CAS  Google Scholar 

  7. Irikura KK, Johnson RD (2006) J Phys Chem A 110:13974–13978

    Article  CAS  Google Scholar 

  8. da Silva G, Bozzelli JW, Asatryan R (2009) J Phys Chem A113:8596–8606

    Article  Google Scholar 

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian, Inc, Wallingford

    Google Scholar 

  10. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  11. Li QS, Zhang Y, Zhang SW (2004) J Phys Chem A 108:2014–2019

    Article  CAS  Google Scholar 

  12. Zhang JD, Cheng XL (2012) J Chem Phys 137:214317

    Article  Google Scholar 

  13. Zhang JD, Wang HF, Xue XY, Zhang YW, Cheng XL (2012) Acta Chim Sin 70:2543–2548

    Article  CAS  Google Scholar 

  14. Su XF, Cheng XL, Meng CM, Yuan XL (2009) J Hazard Mater 161:551–558

    Article  CAS  Google Scholar 

  15. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  16. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  17. Boboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650–7657

    Article  Google Scholar 

  18. Benson SW (1976) Thermochemical Kinetics. Wiley, New York

    Google Scholar 

  19. Batt L, Robinson GN (1982) The chemistry of amino, nitroso, and nitro compounds and their derivatives. In: Patai S (ed) Wiley, New York

  20. Mckee ML (1986) J Am Chem Soc 108:5784–5792

    Article  CAS  Google Scholar 

  21. Zhu RS, Lin MC (2009) Chem Phys Lett 478:11–16

    Article  CAS  Google Scholar 

  22. Homayoon Z, Bowman JM (2013) J Phys Chem A 117:11665–11672

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 21363019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Dong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JD., Kang, LH. & Cheng, XL. Theoretical study of the reaction mechanism of CH3NO2 with NO2, NO and CO: the bimolecular reactions that cannot be ignored. J Mol Model 21, 13 (2015). https://doi.org/10.1007/s00894-014-2568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2568-y

Keywords

Navigation