Skip to main content
Log in

How does the increment of hetero-cyclic conjugated moieties affect electro-optical and charge transport properties of novel naphtha-difuran derivatives? A computational approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have investigated computationally the effects of π-conjugation extension on naphtha[2,1-b:6,5-b’] difuran (DPNDF); where we increase the number of fused NDF (central core) and furan rings in the parent molecule. The molecular structures of all analogues have been optimized at the ground (S0) and first excited (S1) states using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. Then highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), photophysical properties, adiabatic/vertical electron affinities (EAa)/(EAv), adiabatic/vertical ionization potentials (IPa)/(IPv), and hole/electron reorganization energies λhe have been investigated. The effect of NDF and furan rings on structural and electro-optical properties has also been studied. Our calculated reorganization energies of 1a, 1b, and 2c reveal them, materials with balanced hole/electron charge transport, whereas 2a and 2b are good hole-transport materials. By increasing the number of furan rings; the photostability was augmented in 2a, 2b, and 2c.

Computed emission spectra, at the TD-B3LYP/6-31G** level of theory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reshak AH, Stys D, Auluck S, Kityk IV (2010) Density functional calculations of the electronic structure of 3-phenylamino-4-phenyl-1,2,4-triazole-5-thione. Phys Chem Phys 12(12):2975–2980

    Article  Google Scholar 

  2. Reshak AH, Stys D, Auluck S, Kityk IV (2009) Ab initio calculation of the electronic band structure, density of states and optical properties of α-2-methyl-1-nitroisothiourea. J Phys Chem B 113(38):12648–12654

    Article  CAS  Google Scholar 

  3. Reshak AH, Stys D, Auluck S, Kityk IV (2010) Linear and nonlinear optical susceptibilities of 3-phenylamino-4-phenyl-1,2,4-triazole-5-thione. J Phys Chem B 114(5):1815–1821

    Article  CAS  Google Scholar 

  4. Pokladko M, Gondek E, Sanetra J, Nizioł J, Danel A, Kityk IV, Reshak AH (2009) Spectral emission properties of 4-aryloxy-3-methyl-1-phenyl-1H-pyrazolo[3,4-b]quinolines. Spectrochim Acta A Mol Biomol Spectrosc 73(2):281–285

    Article  CAS  Google Scholar 

  5. Fuks-Janczarek I, Reshak AH, Kuźnik W, Kityk IV, Gabański R, Lapkowski M, Motyka R, Suwiński J (2009) UV–vis absorption spectra of 1,4-dialkoxy-2,5-bis[2-(thien-2-yl)ethenyl]benzenes. Spectrochim Acta A Mol Biomol Spectrosc 72(2):394–398

    Article  CAS  Google Scholar 

  6. Wojciechowski A, Ozga K, Reshak AH, Miedzinski R, Kityk IV, Berdowski J, Tylczyński Z (2010) Photoinduced effects in l-alanine crystals. Mater Lett 64(18):1957–1959

    Article  CAS  Google Scholar 

  7. Matsumi N, Naka K, Chujo Y (1998) Extension of π-conjugation length via the vacant p-orbital of the boron atom. Synthesis of novel electron deficient π-conjugated systems by hydroboration polymerization and their blue light emission. J Am Chem Soc 120(20):5112–5113

    Article  CAS  Google Scholar 

  8. Morley JO, Docherty VJ, Pugh D (1987) Non-linear optical properties of organic molecules. Part 2 effect of conjugation length and molecular volume on the calculated hyperpolarisabilities of polyphenyls and polyenes. J Chem Soc Perkin Trans 2(9):1351–1355

    Article  Google Scholar 

  9. Monkman AP, Burrows HD, Hamblett I, Navarathnam S, Svensson M, Andersson MR (2001) The effect of conjugation length on triplet energies, electron delocalization and electron–electron correlation in soluble polythiophenes. J Chem Phys 115(19):9046–9049

    Article  CAS  Google Scholar 

  10. Meier H, Stalmach U, Kolshorn H (1997) Effective conjugation length and UV/vis spectra of oligomers. Acta Polym 48(9):379–384

    Article  CAS  Google Scholar 

  11. Moussallem C, Gohier F, Mallet C, Allain M, Frère P (2012) Extended benzodifuran–furan derivatives as example of π-conjugated materials obtained from sustainable approach. Tetrahedron 68(41):8617–8621

    Article  CAS  Google Scholar 

  12. Kim R, Amegadze PSK, Kang I, Yun H-J, Noh Y-Y, Kwon S-K, Kim Y-H (2013) High-mobility Air-stable naphthalene diimide-based copolymer containing extended π-conjugation for n-channel organic field effect transistors. Adv Funct Mater 23(46):5719–5727

    Article  CAS  Google Scholar 

  13. Oldham WJ, Miao Y-J, Lachicotte RJ, Bazan GC (1998) Stilbenoid dimers: effect of conjugation length and relative chromophore orientation. J Am Chem Soc 120(2):419–420

    Article  CAS  Google Scholar 

  14. Reshak AH, Kamarudin H, Auluck S (2013) Electronic structure, density of electronic states, and the chemical bonding properties of 2,4-dihydroxyl hydrazone crystals (C13H11N3O4). J Mater Sci 48(10):3805–3811

    Article  CAS  Google Scholar 

  15. Reshak AH, Kamarudin H, Kityk IV, Auluck S (2013) Electronic structure, charge density, and chemical bonding properties of C11H8N2O o-methoxydicyanovinylbenzene (DIVA) single crystal. J Mater Sci 48(15):5157–5162

    Article  CAS  Google Scholar 

  16. Reshak AH, Kamarudin H, Auluck S (2012) Acentric nonlinear optical 2,4-dihydroxyl hydrazone isomorphic crystals with large linear nonlinear optical susceptibilities and hyperpolarizability. J Phys Chem B 116(15):4677–4683

    Article  CAS  Google Scholar 

  17. Reshak AH, Auluck S, Stys D, Kityk IV, Kamarudin H, Berdowski J, Tylczynski Z (2011) Dispersion of linear and non-linear optical susceptibilities for amino acid 2-aminopropanoic CH3CH(NH2)COOH single crystals: experimental and theoretical investigations. J Mater Chem 21(43):17219–17228

    Article  CAS  Google Scholar 

  18. Reshak AH, Stys D, Auluck S, Kityk IV, Kamarudin H (2011) Structural properties and bonding nature of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole single crystal. Mater Chem Phys 130(1–2):458–465

    Article  CAS  Google Scholar 

  19. Irfan A (2014) First principle investigations to enhance the charge transfer properties by bridge elongation. J Theor Comput Chem 13(02):1450013

    Article  Google Scholar 

  20. Muhammad S, Irfan A, Shkir M, Chaudhry AR, Kalam A, AlFaify S, Al-Sehemi AG, Al-Salami AE, Yahia IS, Xu HL, Su ZM (2014) How does hybrid bridging core modification robust the nonlinear optical properties in donor-π-acceptor configuration? a case study of dinitrophenol derivatives. J Comput Chem. doi:10.1002/jcc.23777

    Google Scholar 

  21. Irfan A, Al-Sehemi AG, Al-Assiri MS (2013) Modeling of multifunctional donor-bridge-acceptor 4, 6-di (thiophen-2-yl) pyrimidine derivatives: A first principles study. J Mol Graphics Modell 44:168–176

    Article  CAS  Google Scholar 

  22. Irfan A, Jin R, Al-Sehemi AG, Asiri AM (2013) Quantum chemical study of the donor-bridge-acceptor triphenylamine based sensitizers. Spectrochim Acta A Mol Biomol Spectrosc 110:60–66

    Article  CAS  Google Scholar 

  23. Irfan A (2014) Influence of the substitution on the electronic properties of perylene-3, 4: 9, 10-bis (dicarboximides): density functional theory study. Bull Chem Soc Ethiop 28(1):101–110

    CAS  Google Scholar 

  24. Irfan A, Ijaz F, Al-Sehemi A, Asiri A (2012) Quantum chemical approach toward rational designing of highly efficient oxadiazole based oligomers used in organic field effect transistors. J Comput Electron 11(4):374–384

    Article  CAS  Google Scholar 

  25. Katz EH (1997) Organic molecular solids as thin film transistor semiconductors. J Mater Chem 7(3):369–376

    Article  CAS  Google Scholar 

  26. Horowitz G, Hajlaoui ME (2000) Mobility in polycrystalline oligothiophene field-effect transistors dependent on grain size. Adv Mater 12(14):1046–1050

    Article  CAS  Google Scholar 

  27. Newman CR, Frisbie CD, da Silva Filho DA, Brédas J-L, Ewbank PC, Mann KR (2004) Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem Mater 16(23):4436–4451

    Article  CAS  Google Scholar 

  28. Nakano M, Shinamura S, Houchin Y, Osaka I, Miyazaki E, Takimiya K (2012) Angular-shaped naphthodifurans, naphtho[1,2-b;5,6-b’]- and naphtho[2,1-b;6,5-b’]-difuran: are they isoelectronic with chrysene? Chem Commun 48(45):5671–5673

    Article  CAS  Google Scholar 

  29. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Article  CAS  Google Scholar 

  30. Ho PKH, Kim J-S, Burroughes JH, Becker H, Li SFY, Brown TM, Cacialli F, Friend RH (2000) Molecular-scale interface engineering for polymer light-emitting diodes. Nature 404(6777):481–484

    Article  CAS  Google Scholar 

  31. Al-Sehemi AG, Irfan A, Asiri AM (2014) Red and yellow color aspects of compound 3-dicyclopropylmethylene-5-dicyanomethylene-4-diphenylmethylenetetrahydrofuran-2-one chromism effect. Chin Chem Lett 25(4):609–612

    Article  CAS  Google Scholar 

  32. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13(1):85–88

    Article  CAS  Google Scholar 

  33. Irfan A (2013) Quantum chemical investigations of electron injection in triphenylamine-dye sensitized TiO2 used in dye sensitized solar cells. Mater Chem Phys 142(1):238–247

    Article  CAS  Google Scholar 

  34. Wrackmeyer MS, Hein M, Petrich A, Meiss J, Hummert M, Riede MK, Leo K (2011) Dicyanovinyl substituted oligothiophenes thermal stability, mobility measurements, and performance in photovoltaic devices. Sol Energy Mater Sol Cells 95(12):3171–3175

    Article  CAS  Google Scholar 

  35. Irfan A, Nadeem M, Athar M, Kanwal F, Zhang J (2011) Electronic, optical and charge transfer properties of α, α’-bis(dithieno[3,2-b:2’,3’- d]thiophene) (BDT) and its heteroatom-substituted analogues. Comput Theor Chem 968(1–3):8–11

    Article  CAS  Google Scholar 

  36. Irfan A, Al-Sehemi AG, Muhammad S, Zhang J (2011) Packing effect on the transfer integrals and mobility in α, α’-bis(dithieno[3,2-b:2’,3’-d]thiophene) (BDT) and its heteroatom-substituted analogues. Aust J Chem 64(12):1587–1592

    Article  CAS  Google Scholar 

  37. Das S, Senanayak SP, Bedi A, Narayan KS, Zade SS (2011) Synthesis and charge carrier mobility of a solution-processable conjugated copolymer based on cyclopenta[c]thiophene. Polymer 52(25):5780–5787

    Article  CAS  Google Scholar 

  38. Letizia JA, Cronin S, Ortiz RP, Facchetti A, Ratner MA, Marks TJ (2010) Phenacyl–thiophene and quinone semiconductors designed for solution processability and air-stability in high mobility n-channel field-effect transistors. Chem Eur J 16(6):1911–1928

    Article  CAS  Google Scholar 

  39. Buonocore F, Matteo A (2009) Energetic of molecular interface at metal-organic heterojunction: the case of thiophenethiolate chemisorbed on Au(111). Theor Chem Acc 124(3–4):217–223

    Article  CAS  Google Scholar 

  40. Wu Q-X, Geng Y, Liao Y, Tang X-D, Yang G-C, Su Z-M (2012) Theoretical studies of the effect of electron-withdrawing dicyanovinyl group on the electronic and charge-transport properties of fluorene-thiophene oligomers. Theor Chem Acc 131(3):1–9

    Google Scholar 

  41. Unni KNN, Dabos-Seignon S, Nunzi J-M (2006) Influence of the polymer dielectric characteristics on the performance of a quaterthiophene organic field-effect transistor. J Mater Sci 41(2):317–322

    Article  CAS  Google Scholar 

  42. Pingel P, Zen A, Neher D, Lieberwirth I, Wegner G, Allard S, Scherf U (2009) Unexpectedly high field-effect mobility of a soluble, low molecular weight oligoquaterthiophene fraction with low polydispersity. Appl Phys A 95(1):67–72

    Article  CAS  Google Scholar 

  43. Koezuka H, Tsumura A, Ando T (1987) Field-effect transistor with polythiophene thin film. Synth Met 18(1–3):699–704

    Article  CAS  Google Scholar 

  44. Mikhailov IA, Belfield KD, Masunov AE (2009) DFT-based methods in the design of Two-photon operated molecular switches. J Phys Chem A 113(25):7080–7089

    Article  CAS  Google Scholar 

  45. Irfan A, Al-Sehemi AG, Muhammad S (2014) Push-pull effect on the charge transport properties in anthra [2, 3-b] thiophene derivatives used as dye-sensitized and hetero-junction solar cell materials. Synth Met 190:27–33

    Article  CAS  Google Scholar 

  46. Irfan A, Al-Sehemi AG, Al-Assiri MS (2014) The effect of donors–acceptors on the charge transfer properties and tuning of emitting color for thiophene, pyrimidine and oligoacene based compounds. J Fluorine Chem 157:52–57

    Article  CAS  Google Scholar 

  47. Irfan A, Chaudhry AR, Al-Sehemi AG, Al-Asiri MS, Muhammad S, Kalam A (2014) Investigating the effect of acene-fusion and trifluoroacetyl substitution on the electronic and charge transport properties by density functional theory. J Saudi Chem Soc. doi:10.1016/j.jscs.2014.09.009 (0)

    Google Scholar 

  48. Irfan A (2014) Highly efficient renewable energy materials benzo[2,3-b]thiophene derivatives: electronic and charge transfer properties study Optik. Int J Light Electron Optics 125(17):4825–4830

    Article  CAS  Google Scholar 

  49. Irfan A, Al-Sehemi AG, Al-Assiri MS (2014) Push–pull effect on the electronic, optical and charge transport properties of the benzo[2,3-b]thiophene derivatives as efficient multifunctional materials. Comput Theor Chem 1031:76–82

    Article  CAS  Google Scholar 

  50. Irfan A (2014) Modeling of efficient charge transfer materials of 4,6-di(thiophen-2-yl)pyrimidine derivatives quantum chemical investigations computational. Mater Sci 81:488–492

    CAS  Google Scholar 

  51. Miyata Y, Nishinaga T, Komatsu K (2005) Synthesis and structural, electronic, and optical properties of oligo(thienylfuran)s in comparison with oligothiophenes and oligofurans. J Org Chem 70(4):1147–1153

    Article  CAS  Google Scholar 

  52. Miyata Y, Terayama M, Minari T, Nishinaga T, Nemoto T, Isoda S, Komatsu K (2007) Synthesis of oligo(thienylfuran)s with thiophene rings at both ends and their structural, electronic, and field-effect properties. Chem–Asian J 2(12):1492–1504

    CAS  Google Scholar 

  53. Gidron O, Dadvand A, Sheynin Y, Bendikov M, Perepichka DF (2011) Towards “green” electronic materials. α-oligofurans as semiconductors. Chem Commun 47(7):1976–1978

    Article  CAS  Google Scholar 

  54. Wu C-C, Hung W-Y, Liu T-L, Zhang L-Z, Luh T-Y (2003) Hole-transport properties of a furan-containing oligoaryl. J Appl Phys 93(9):5465–5471

    Article  CAS  Google Scholar 

  55. Kadac K, Bosiak MJ, Nowaczyk J (2012) Synthesis and AC impedance studies of 2,6-distyrylbenzofuro[5,6-b]furan based new organic semiconductor. Synth Met 162(21–22):1981–1986

    Article  CAS  Google Scholar 

  56. Nakano M, Niimi K, Miyazaki E, Osaka I, Takimiya K (2012) Isomerically pure anthra[2,3-b:6,7-b’]-difuran (anti-ADF), −dithiophene (anti-ADT), and -diselenophene (anti-ADS): selective synthesis electronic structures, and application to organic field-effect transistors. J Org Chem 77(18):8099–8111

    Article  CAS  Google Scholar 

  57. Niimi K, Mori H, Miyazaki E, Osaka I, Kakizoe H, Takimiya K, Adachi C (2012) [2,2[prime or minute]]Bi[naphtho[2,3-b]furanyl]: a versatile organic semiconductor with a furan-furan junction. Chem Commun 48(47):5892–5894

    Article  CAS  Google Scholar 

  58. Watanabe M, Su W-T, Chang YJ, Chao T-H, Wen Y-S, Chow TJ (2013) Solution-processed optoelectronic properties of functionalized anthradifuran. Chem–Asian J 8(1):60–64

    CAS  Google Scholar 

  59. Chen H, Delaunay W, Li J, Wang Z, Bouit P-A, Tondelier D, Geffroy B, Mathey F, Duan Z, Réau R, Hissler M (2013) Benzofuran-fused phosphole: synthesis electronic, and electroluminescence properties. Org Lett 15(2):330–333

    Article  CAS  Google Scholar 

  60. Mitsudo K, Harada J, Tanaka Y, Mandai H, Nishioka C, Tanaka H, Wakamiya A, Murata Y, Suga S (2013) Synthesis of hexa(furan-2-yl)benzenes and their π-extended derivatives. J Org Chem 78(6):2763–2768

    Article  CAS  Google Scholar 

  61. Mitsui C, Soeda J, Miwa K, Tsuji H, Takeya J, Nakamura E (2012) Naphtho[2,1-b:6,5-b’]difuran a versatile motif available for solution-processed single-crystal organic field-effect transistors with high hole mobility. J Am Chem Soc 134(12):5448–5451

    Article  CAS  Google Scholar 

  62. Ponce Ortiz R, Herrera H, Mancheño MJ, Seoane C, Segura JL, Mayorga Burrezo P, Casado J, López Navarrete JT, Facchetti A, Marks TJ (2013) Molecular and electronic-structure basis of the ambipolar behavior of naphthalimide–terthiophene derivatives: implementation in organic field-effect transistors chemistry. A Eur J 19(37):12458–12467

    Article  CAS  Google Scholar 

  63. Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2013) Quantum chemical approach toward the electronic, photophysical and charge transfer properties of the materials used in organic field-effect transistors. Mater Chem Phys 138(2–3):468–478

    Article  CAS  Google Scholar 

  64. Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2014) Effects of electron withdrawing groups on transfer integrals, mobility, electronic and photo-physical properties of naphtho[2,1-b:6,5-b’]difuran derivatives: a theoretical study. Sci Adv Mater 6(8):1727–1739

    Article  CAS  Google Scholar 

  65. Chaudhry AR, Ahmed R, Irfan A, Shaari A, Maarof H, Al-Sehemi AG (2014) First principles investigations of electronic, photoluminescence and charge transfer properties of the naphtho[2,1-b:6,5-b’]difuran and its derivatives for OFET. Sains Malays 43(6):867–875

    CAS  Google Scholar 

  66. Chaudhry AR, Ahmed R, Irfan A, Muhammad S, Shaari A, Al-Sehemi AG (2014) Effect of heteroatoms substitution on electronic, photophysical and charge transfer properties of naphtha [2,1-b:6,5-b’] difuran analogues by density functional theory. Comput Theor Chem 1045:123–134

    Article  CAS  Google Scholar 

  67. Chaudhry AR, Ahmed R, Irfan A, Muhammad S, Shaari A, Al-Sehemi AG (2014) Influence of push-pull configuration on the electro-optical and charge transport properties of novel naphtho-difuran derivatives: a DFT study. RSC Adv 4(90):48876–48887

    Article  CAS  Google Scholar 

  68. Becke AD (1993) Density-functional thermochemistry III. The role of exact exchange. J Chem Phys 98(7):5648–5652

    Article  CAS  Google Scholar 

  69. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789

    Article  CAS  Google Scholar 

  70. Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods XII. Further extensions of gaussian-type basis sets for Use in molecular orbital studies of organic molecules. J Chem Phys 56(5):2257–2261

    Article  CAS  Google Scholar 

  71. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies Theoretica. Chim Acta 28(3):213–222

    Article  CAS  Google Scholar 

  72. Dill JD, Pople JA (1975) Self‐consistent molecular orbital methods. XV extended gaussian‐type basis sets for lithium, beryllium, and boron. J Chem Phys 62(7):2921–2923

    Article  CAS  Google Scholar 

  73. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256(4–5):454–464

    Article  CAS  Google Scholar 

  74. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224

    Article  CAS  Google Scholar 

  75. Van Caillie C, Amos RD (1999) Geometric derivatives of excitation energies using SCF and DFT. Chem Phys Lett 308(3–4):249–255

    Article  Google Scholar 

  76. Van Caillie C, Amos RD (2000) Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals. Chem Phys Lett 317(1–2):159–164

    Article  Google Scholar 

  77. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117(16):7433–7447

    Article  CAS  Google Scholar 

  78. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108(11):4439–4449

    Article  CAS  Google Scholar 

  79. Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas J-L (2002) The vibrational reorganization energy in pentacene: molecular influences on charge transport. J Am Chem Soc 124(27):7918–7919

    Article  CAS  Google Scholar 

  80. Reimers JR (2001) A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and duschinsky rotation matrices for large molecules. J Chem Phys 115(20):9103–9109

    Article  CAS  Google Scholar 

  81. Irfan A, Cui R, Zhang J (2009) Fluorinated derivatives of mer-Alq3: energy decomposition analysis, optical properties, and charge transfer study. Theor Chem Acc 122(5–6):275–281

    Article  CAS  Google Scholar 

  82. Coropceanu V, Nakano T, Gruhn NE, Kwon O, Yade T, K-i K, Brédas J-L (2006) Probing charge transport in π-stacked fluorene-based systems. J Phys Chem B 110(19):9482–9487

    Article  CAS  Google Scholar 

  83. Li Y, Zou L-Y, Ren A-M, Feng J-K (2012) Theoretical study on the electronic structures and photophysical properties of a series of dithienylbenzothiazole derivatives. Comput Theor Chem 981:14–24

    Article  CAS  Google Scholar 

  84. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.02. Gaussian Inc, Wallingford

  85. Zhang Y, Cai X, Bian Y, Li X, Jiang J (2008) Heteroatom substitution of oligothienoacenes: from good p-type semiconductors to good ambipolar semiconductors for organic field-effect transistors. J Phys Chem C 112(13):5148–5159

    Article  CAS  Google Scholar 

  86. Marcus RA (1993) Electron transfer reactions in chemistry theory and experiment. Rev Mod Phys 65(3):599–610

    Article  CAS  Google Scholar 

  87. Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci 99(9):5804–5809

    Article  Google Scholar 

  88. Shinamura S, Osaka I, Miyazaki E, Nakao A, Yamagishi M, Takeya J, Takimiya K (2011) Linear- and angular-shaped naphthodithiophenes: selective synthesis properties, and application to organic field-effect transistors. J Am Chem Soc 133(13):5024–5035

    Article  CAS  Google Scholar 

  89. Mohakud S, Alex AP, Pati SK (2010) Ambipolar charge transport in α-oligofurans: a theoretical study. J Phys Chem C 114(48):20436–20442

    Article  CAS  Google Scholar 

  90. Yi Y, Zhu L, Brédas J-L (2012) Charge-transport parameters of acenedithiophene crystals: realization of one-, two-, or three-dimensional transport channels through alkyl and phenyl derivatizations. J Phys Chem C 116(8):5215–5224

    Article  CAS  Google Scholar 

  91. Politzer P, Truhlar (Eds.) DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

  92. Stewart RF (1979) On the mapping of electrostatic properties from bragg diffraction data. Chem Phys Lett 65(2):335–342

    Article  CAS  Google Scholar 

  93. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Mol Sci 1(2):153–163

    Article  CAS  Google Scholar 

  94. Shkir M, Muhammad S, AlFaify S, Irfan A, Yahia IS (2015) A dual approach to study the electro-optical properties of a noncentrosymmetric l-asparagine monohydrate. Spectrochim Acta A Mol Biomol Spectrosc 137:432–441

    Article  CAS  Google Scholar 

  95. Muhammad S, Xu H, Janjua MRSA, Su Z, Nadeem M (2010) Quantum chemical study of benzimidazole derivatives to tune the second-order nonlinear optical molecular switching by proton abstraction. Phys Chem Phys 12(18):4791–4799

    Article  CAS  Google Scholar 

  96. Irfan A, Zhang J, Chang Y (2010) Theoretical investigations of the charge transfer properties of anthracene derivatives. Theor Chem Acc 127(5–6):587–594

    Article  CAS  Google Scholar 

  97. Irfan A, Zhang J (2009) Effect of one ligand substitution on charge transfer and optical properties in mer-Alq3: a theoretical study. Theor Chem Acc 124(5–6):339–344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Ministry of the Education/Universiti Teknologi Malaysia (UTM) for providing funding via project Q.J130000.2526.06H15 for the successful execution of this project and the King Khalid University (KKU) for providing the support and facilities to complete this research study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aijaz Rasool Chaudhry or R. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhry, A.R., Ahmed, R., Irfan, A. et al. How does the increment of hetero-cyclic conjugated moieties affect electro-optical and charge transport properties of novel naphtha-difuran derivatives? A computational approach. J Mol Model 20, 2547 (2014). https://doi.org/10.1007/s00894-014-2547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2547-3

Keywords

Navigation