Skip to main content

Advertisement

Log in

Theoretical study on the reaction mechanism of chlordimeform with OH radicals

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical investigation on the multiple-channel degradation mechanism of chlordimeform with OH radicals in the atmosphere was completed using a dual-level direct dynamics method. The equilibrium geometries and the corresponding harmonic vibrational frequencies of the stationary points were obtained at the M06-2X/6-311++G(d,p) level. The minimum energy paths (MEP) were calculated at the same level, and energetic information was further refined at M06-2X/6-311++G(3df,2p) level. The rate constants for the 15 reaction channels were calculated by improved canonical variational transition state theory with small-curvature tunneling correction over the temperature range 200–1,000 K. The total rate constants are in good agreement with the available experimental data and the three-parameter expression k(T) =2.62 × 10−18T 2.71 exp (899.61/T) cm3molecule−1 s−1 was given. The calculated results indicate that the addition reaction of the carbon–nitrogen double bond is the major channel, while the abstraction reaction from the benzene ring of chlordimeform is the least competitive channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Serra-Bonvehí J, Orantes-Bermejo J (2010) Pest Manag Sci 66:1230

    Article  Google Scholar 

  2. Shi J, Chen GH, Tong MZ, Wu X, Wang K (2011) J Hebei Univ Sci Technol 32:421

    CAS  Google Scholar 

  3. Sun TF (2010) J Anhui Agric Sci 38:11981

    CAS  Google Scholar 

  4. Zhou ZQ, Ding HY, Jiang XY, Wu J (2009) Agrochemicals Res Appl 13:27

    Google Scholar 

  5. Yu JL (2009) J Shandong Inst Commer Technol 9:123

    Google Scholar 

  6. Fang R, Yi LX, Shao YX, Zhang L, Chen GH (2013) J Liq Chromatogr R T 20:79740

    Google Scholar 

  7. Li W, Sun M, Li MZ (2013) Adv J Food Sci Technol 5:381

    CAS  Google Scholar 

  8. Chamkasem N, Ollis LW, Harmon T, Lee S, Mercer G (2013) J Agric Food Chem 61:2315

    Article  CAS  Google Scholar 

  9. Watkinson WPJ (1986) Toxicol Environ Health 19:207

    Article  CAS  Google Scholar 

  10. Lund AE, Yim GKW, Shankland DL (1978) Pesticide Venom Neurotoxicity 46:171

    Article  Google Scholar 

  11. Lund AE, Shankland DL, Chinn C, Yim GKW (1978) Toxicol Appl Pharmacol 44:357

    Article  CAS  Google Scholar 

  12. Popp W, Schmieding W, Speck M, Vahrenholz C, Norpoth K (1992) Br J Ind Med 49:529

    CAS  Google Scholar 

  13. Kirkali Z, Chan T, Manoharan M, Algaba F, Busch C (2005) Urology 66:4

    Article  Google Scholar 

  14. Vineis P (1994) Environ Health Perspect 102:7

    Article  Google Scholar 

  15. Vineis P, Pirastu R (1997) Cancer Cause Control 8:346

    Article  CAS  Google Scholar 

  16. Rapiti E, Fantini F, Dell’Orco V, Fano V (1997) Eur J Epidemiol 13:281

    Article  CAS  Google Scholar 

  17. Sun F, Zhu T, Shang J, Han L (2005) Int J Chem Kinet 37:755

    Article  CAS  Google Scholar 

  18. Jimenez JJ, Bernal JL, Toribio LJ (2002) Chromatogr A 946:247

    Article  CAS  Google Scholar 

  19. Corta E, Bakkali A, Barranco A, Berrueta LA, Gallo B (2000)Talanta 52:169

    Article  CAS  Google Scholar 

  20. Hamed MS, Knowles CO (1988) J Econ Entomol 81:1295

    Article  CAS  Google Scholar 

  21. Knowles CO, Benezet HJJ (1977) Agric Food Chem 25:022

    Article  Google Scholar 

  22. Lee W, Stevens PS, Hites RA (2003) J Phys Chem A 107:6603

    Article  CAS  Google Scholar 

  23. Crutzen PJ, Ramanathan V (2000) Science 290:299

    Article  CAS  Google Scholar 

  24. Atkinson R (1988) In: Watson AY, Bates RR, Kennedy D(eds) Air pollution, the automobile, and public health. National Academy Press, Washington, DC, p 99

  25. Corchado JC, Espinosa-Garcia J, Hu WP, Rossi I, Truhlar DG (1995) J Phys Chem 99:687

    Article  CAS  Google Scholar 

  26. Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860

    Article  CAS  Google Scholar 

  27. Bell RL, Truong TN (1994) J Chem Phys 101:10442

    Article  CAS  Google Scholar 

  28. Truong TN, Duncan WT, Bell RL (1996) In: Laird BB, Ross RB, Ziegler T (eds) Chemical applications of density functional theory. American Chemical Society, Washington, DC, p 85

    Chapter  Google Scholar 

  29. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, p 229

    Chapter  Google Scholar 

  30. Corchado JC, Chuang YY, Fast PL, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Fernandez-Ramos A, Ellingson BA, Lynch BJ, Zheng JJ, Melissasa VS,Villa J, Rossi I, Coitino EL, Pu JZ, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar, DG (2007) POLYRATE version 9.7, Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis

  31. Truhlar DG, Garrett BC (1980) Accounts Chem Res 13:440

    Article  CAS  Google Scholar 

  32. Truhlar DG, Isaacson AD, Garrett BC (1985) In: Baer M (ed) Generalized transition state theory: in the theory of chemical reaction dynamics, vol 4. CRC, Boca Raton, p 65

    Google Scholar 

  33. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Hratchian XLiHP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JrJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene MJ, Knox EJ, Cross B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador PJ, Dannenberg J, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Revision A.02, Wallingford CT

  35. Baldridge MS, Gordor R, Steckler R, Truhlar DG (1989) J Phys Chem 93:5107

    Article  CAS  Google Scholar 

  36. Gonzalez-Lafont A, Truong TN, Truhlar DG (1991) J Chem Phys 95:8875

    Article  CAS  Google Scholar 

  37. Garrett BC, Truhlar DG (1979) J Phys Chem 83:1052

    Article  CAS  Google Scholar 

  38. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235

    Article  CAS  Google Scholar 

  39. Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408

    Article  CAS  Google Scholar 

  40. Truhlar DG (1991) J Comput Chem 12:266

    Article  CAS  Google Scholar 

  41. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221

    Article  CAS  Google Scholar 

  42. Huber KP, Herzberg G (2005) In NIST Chemistry WebBook; NIST Standard Reference Database Number 69

  43. Kuchitsu K (ed) (1998) Structure of free polyatomic molecules basic data. Springer, Berlin, p 58

  44. Hammond GS (1955) J Am Chem Soc 77:334

    Article  CAS  Google Scholar 

  45. Shimanouchi T (1972) In: Tables of molecular vibrational frequencies consolidated volume I, National Bureau of Standards, US GPO: Washinton DC

  46. Coblentz Society (2005) In NIST Chemistry WebBook; NIST Standard Reference Database Number 69

Download references

Acknowledgments

The authors thank Professor Donald G. Truhlar for providing the POLYRATE 9.7 program. This work was supported by the National Basic Research Program of China (2012CB723308), the National Natural Science Foundation of China (51337002 and 50977019), the Doctoral Foundation by the Ministry of Education of China (20112303110005), and the Science Foundation for Distinguished Young Scholar of Heilongjiang Province (JC201206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Calculated and experimental frequencies (in cm−1) of all the stationary points for the title reaction at the M06-2X/6-311++G(d,p) level. (DOC 97.5 kb)

Table S2

Calculated ICVT/SCT rate constants for abstraction reaction channels (in cm3molecule−1 s−1) at the M06-2X/6-311++G(3df,2p)// M06-2X/6-311++G(d,p) level between 200 and 1,000 K. (DOC 61 kb)

Table S3

Calculated ICVT/SCT rate constants for addition reaction channels (in cm3molecule−1 s−1) at the M06-2X/6-311++G(3df,2p)// M06-2X/6-311++G(d,p) level between 200 and 1,000 K. (DOC 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhang, K., Lu, Y. et al. Theoretical study on the reaction mechanism of chlordimeform with OH radicals. J Mol Model 20, 2519 (2014). https://doi.org/10.1007/s00894-014-2519-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2519-7

Keywords

Navigation