Skip to main content
Log in

Theoretical studies on vicinal-tetrazine compounds: furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-α) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-β)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The derivatives of 1,2,3,4-tetrazine may be promising candidates of high-energy density compounds and are receiving more and more attention. In this study, two 1,2,3,4-tetrazines, furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-α) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-β), were theoretically studied. The geometrical structures in gas phase were studied at the B3LYP/6-311++G(d,p) level of density functional theory (DFT). The gas phase enthalpies of formation were calculated by the homodesmotic reaction method. The enthalpies of sublimation and solid phase enthalpies of formation were predicted with corrections of electrostatic potential method at the B3PW91/6-31G(d,p) level. The detonation properties were estimated with the Kamlet-Jacobs equations based on the predicted densities and enthalpies of formation in solid state. The available free space in the lattice was calculated to evaluate their stability. Calculations of potential energy surface and structure interconversion thermodynamics under different temperatures were carried out to further confirm their stability. FTTOs have better performance than HMX and FTDO but are easy to decompose to 5,6-dinitroso-v-tetrazine 1,3-dioxide. A synthesis route for FTTO-β was proposed to provide a consideration for the further study. We believe FTTOs could be the key compounds to synthesize other v-tetrazines such as TTTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Scheme 5
Fig. 8
Scheme 6

Similar content being viewed by others

References

  1. Tang Y, Yang H, Cheng G (2013) Synthesis and characterization of a stable, Catenated N11 energetic salt. Angew Chem Int Ed 52:1–4

    Article  Google Scholar 

  2. Wu Q, Zhu W, Xiao H (2014) A new design strategy for high-energy Low-sensitivity explosives: combining oxygen balance equal to zero, a combination of nitro and amino groups, and N-oxide in one molecule of 1-amino-5-Nitrotetrazole-3N-oxide. J Mater Chem A 2:13006–13015

    Article  CAS  Google Scholar 

  3. Politzer P, Lane P, Murray JS (2013) Computational analysis of relative stabilities of polyazine N-oxides. Struct Chem 24:1965–1974

    Article  CAS  Google Scholar 

  4. Liu Z, Wu Q, Zhu W (2013) Theoretical study of energetic trinitromethyl-substituted tetrazole and tetrazine derivatives. J Phys Org Chem 26:939–947

    Article  CAS  Google Scholar 

  5. Jorgensen KR, Oyedepo GA, Wilson AK (2011) Highly energetic nitrogen species: reliable energetics via the correlation consistent composite approach (ccCA). J Hazard Mater 186:583–589

    Article  CAS  Google Scholar 

  6. Jaidann M, Roy S, Abou-Rachid H (2010) A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J Hazard Mater 176:165–173

    Article  CAS  Google Scholar 

  7. Thomas JR, Quelch GE, Schaefer HF III (1997) The unknown unsubstituted tetrazines:1,2,3,4-tetrazine and 1,2,3,5-tetrazine. J Org Chem 56:539–543

    Article  Google Scholar 

  8. Churakov AM, Tartakovskii VA (2004) Progress in 1,2,3,4-tetrazine chemistry. Chem Rev 104:2601–2616

    Article  CAS  Google Scholar 

  9. Bi F, Wang B, Li X, Fan X, Cheng X, Ge Z (2012) Progress in the energetic materials based on 1,2,3,4-tetrazine 1,3-dioxide. Chin J Energ Mater 5:630–637

    Google Scholar 

  10. Churakov AM, Ioffe SL, Tarakovsky VA (1995) Synthesis of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-Di-N-oxide. Mendeleev Commun 5:227–228

    Article  Google Scholar 

  11. Lempert DB, Nechiporenko GN, Soglasnova SI (2004) Specific momentum of rocket propellants containing oxidizers based on C, N and O atoms versus the enthalpy of formation and elementary composition of the oxidizer. Khim Fiz 23:75–81

    CAS  Google Scholar 

  12. Pepekin VI, Matyushin YN, Gubina TV (2011) Enthalpy of formation and explosive properties of 5,6-(3,4-furazano)-1,2,3,4-tetrazine-1,3-dioxide. Russ J Phys Chem B 5:97–100

    Article  CAS  Google Scholar 

  13. Kalmykov PI, Burtsev YA, Kuznetsova NP, Konstantinov VV (2004) Phase state and features of formation of the structure of eutectic alloys based on DF-2. Proc III All-russian conf energ condensed systems (Chernogolovka). Yaunus, Moscow, pp 64–66

    Google Scholar 

  14. Zelenov VP, Lobanova AA, Sysolyatin SV, Sevodina NV (2013) New syntheses of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide. Russ J Org Chem 49:467–477

    Article  Google Scholar 

  15. Zelenov VP, Lobanova AA, Lyukshenko NI, Sysolyatin SV, Kalashnikov AI (2008) Behavior of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine 4,6-dioxide in various media. Russ Chem Bull Int Ed 57:1384–1389

    Article  CAS  Google Scholar 

  16. Li X, Wang B, Li Y, Li H, Zhou C, Zhang Y, Lian P (2013) Synthesis of 5H-[1,2,3]triazolo[4,5-c][1,2,5]oxdiazole and its energetic derivatives. Chin J Energ Mater 21:717–720

    Google Scholar 

  17. Lai W, Lian P, Yu T, Bu J, Liu Y, Zhu W, Lv J, Ge Z (2014) Theoretical study in the structure and stability of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]-tetrazine-4,6-Di-N-dioxide (FTDO). J Mol Model 20:2343

    Article  Google Scholar 

  18. Shechter H, Venugopal M, Srinivasulu D (2006) Syntheses of 1,2,3,4-tetrazine Di-N-oxides, pentazole derivatives, pentazine poly-N-oxides, and nitroacetylenes. Ohio State University Research Foundations, DARPA/AFOSR Sponsored, Project 746566. March 8

  19. Teselkin VA (2009) Mechanical sensitivity of furazano-1,2,3,4-tetrazine-1,3-dioxide. Combust Explo Shock 45:632–633

    Article  Google Scholar 

  20. Politzer P, Lane P, Murray JS (2013) Some interesting aspects of N-oxides. Mol Phys http://dx.doi.org/10.1080/00268976.2013.854934

  21. Sheremetev AB, Makhova NN (2001) Monocyclic Furazans and furoxans. Adv Heterocycl Chem 78:66–188

    Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision B.05. Gaussian, Wallingford

    Google Scholar 

  23. Wheeler SE, Houk KN, Schleyer PVR, Allen WD (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131:2547–2560

    Article  CAS  Google Scholar 

  24. Politzer P, Ma Y, Lane P, Concha MC (2005) Computational prediction of standard Gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int J Quantum Chem 105:341–347

    Article  CAS  Google Scholar 

  25. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) An electrostatic interaction correction for iimproved crystal density prediction. Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  26. Kamlet M, Jacobs SJ (1968) Chem Phys 48:23

    CAS  Google Scholar 

  27. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science, Beijing

    Google Scholar 

  28. Politzer P, Murray JS (2011) Some perspective on estimating detonation properties of C, H, N, O compounds. Cent Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  29. Politzer P, Murray JS. Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds: applications to impact sensitivities. J Mol Struct 376: 419–424

  30. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  31. Xiao H, Li Y (1995) Banding and electronic structures of metal azides—sensitivity and conductivity. Sci China B 38:538–545

    CAS  Google Scholar 

  32. Politzer P, Murray JS, Concha MC (1998) C-H and C-NO2 dissociation energies in some azines and Nitroazines. J Phys Chem A 102:6697–6701

    Article  CAS  Google Scholar 

  33. Cao X, Xiang B, Zhang C (2012) Review on relationships between the molecular and crystal structure of explosives and their sensitivities. Chin J Energ Mater 5:643–649

    Google Scholar 

  34. Tan B, Long X, Peng R, Li H, Jin B, Chu S (2011) On the shock sensitivity of explosive compounds with small-scale Gap test. J Phys Chem A 115:10610–10616

    Article  CAS  Google Scholar 

  35. Tan B, Long X, Li J, Nie F (2012) Insight into shock-induced chemical reaction from the perspective of ring strain and rotation of chemical bonds. J Mol Model 18:5127–5132

    Article  CAS  Google Scholar 

  36. Politzer P, Lane P, Murray JS (2013) Tricyclic polyazine N-oxides as proposed energetic compounds. Cent Eur J Energ Mater 10:305–323

    CAS  Google Scholar 

  37. Dlott DD (2003) Fast molecular aspects in energetic materials. In: Politzer P, Murray JS (eds) Energetic materials. Part 2. Detonation, combustion, vol 6. Elsevier, Amsterdam, pp 125–191

    Chapter  Google Scholar 

  38. Tsai DH, Armstrong RW (1994) Defect-enhanced structural relaxation mechanism for the evolution of Hot spots in rapidly compressed crystals. J Phys Chem 98:10997–11000

    Article  CAS  Google Scholar 

  39. Kunz AB (1996) An Ab initio investigation of crystalline PETN. Mater Res Soc Symp Proc 418:287–292

    Article  CAS  Google Scholar 

  40. Rice BM, Mattson W, Trevino SF (1998) Molecular-dynamics investigation of the desensitization of detonable material. Phys Rev E 57:5106–5111

    Article  CAS  Google Scholar 

  41. Tarver CM, Urtiew PA, Tran TD (2005) Sensitivity of 2,6-diamino-3,5-dinitropyrazine-1-oxide. J Energ Mater 23:183–203

    Article  CAS  Google Scholar 

  42. Pospisil M, Vavra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574

    Article  CAS  Google Scholar 

  43. Politzer P, Lane P, Murray JS (2013) Computational characterization of Two Di-1,2,3,4-tetrazine Tetraoxides, DTTO and iso-DTTO, as potential energetic compounds. Cent Eur J Energ Mater 10:37–52

    CAS  Google Scholar 

  44. Rice BM, Hare JJ (2002) A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  45. Murray JS, Lane P, Politzer P (1998) Effects of strongly electron-attracting components on molecular surface electrostatic potentials: applications to predicting impact sensitivities of energetic molecules. Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  46. Lide DR (2009) CRC Handbook of chemistry and physics 2010th edn. CRC, Boca Raton

  47. He L, Dong L, Zhang G, Tan B, Huang M, Tao G (2012) Structure and properties of furazano[3,4-e]-1,2,3,4-tetrazine-1,3-dioxide. Chin J Energ Mater 6:693–696

    Google Scholar 

  48. Teipel U (2005) Energetic materials—particle processing and characterization. Wiley-VCH, Weinheim

    Google Scholar 

  49. Wang T, Zheng C, Yang J, Zhang X, Gong X, Xia M (2014) Theoretical studies on a new high energy density compound 6-amino-7-Nitropyrazino[2,3-e][1,2,3,4]tetrazine 1,3,5-trioxide (ANPTTO). J Mol Model 20:2261–2271

    Article  Google Scholar 

  50. Voronin AA, Zelenov VP, Churakov AM, Strelenko YA, Fedyanin IV, Tartakovsky VA (2014) Synthesis of 1,2,3,4-tetrazine 1,3-dioxides annulated with 1,2,3-triazoles and 1,2,3-triazole 1-oxides. Tetrahedron 70:3018–3022

    Article  CAS  Google Scholar 

  51. Churakov AM, Ioffe SL, Strelenko YA (1990) 1,2,3,4-tetrazine 1,3-dioxides—a new class of heterocyclic compounds. Rus Chem Bull 39:639–640

    Article  Google Scholar 

  52. Churakov AM, Ioffe SL, Tartakovsky VA (1991) The first synthesis of 1,2,3,4-tetrazine −1,3-di-N-oxides. Mendeleev Commun 1:101–103

    Article  Google Scholar 

  53. Frumkin AE, Churakov AM, Strelenko YA (2000) New approach to the synthesis of benzo[e][1,2,3,4]tetrazine 1,3-dioxides. Rus Chem Bull 49:482–486

    Article  CAS  Google Scholar 

  54. Frumkin AE, Churakov AM, Strelenko YA (1999) Synthesis of 1,2,3,4-tetrazino[5,6-f]benzo-1,2,3,4-tetrazine 1,3,7,9-tetra-N-oxides. Org Lett 5:721–724

    Article  Google Scholar 

  55. Tartakovsky VA, Churakov AM, Ioffe SL, Strelenko YA (2004) Synthesis and structures of pyridoannelated 1,2,3,4-tetrazine 1,3-dioxides

  56. Zelenov VP, Voronin AA, Churakov AM, Strelenko YA, Struchkova MI, Tartakovsky VA (2013) Amino(tert-butyl-NNO-azoxy)furoxans: synthesis, isomerization, and rearrangement of N-acetyl derivatives. Russ Chem Bull Int Ed 62:117–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the 086 Project and the Research Fund for Natural Science Foundation of Jiangsu Province (NO. BK20130755) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuedong Gong or Mingzhu Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, T., Xu, L. et al. Theoretical studies on vicinal-tetrazine compounds: furoxano-1,2,3,4-tetrazine-1,3,5-trioxide (FTTO-α) and furoxano-1,2,3,4-tetrazine-1,3,7-trioxide (FTTO-β). J Mol Model 20, 2516 (2014). https://doi.org/10.1007/s00894-014-2516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2516-x

Keywords

Navigation