Skip to main content
Log in

Rovibrational energies and spectroscopic constants for H2O−Ng complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, rovibrational energies and spectroscopic constants for the water −Ng complexes (Ng = He, Ne, Ar, Kr and Xe) were calculated through two different approaches (by solving the Nuclear Schrödinger equation and by applying the Dunham’s method) and using two different potential energy curves (PEC). These PEC were determined using potential parameters obtained through molecular beam scattering experiments and accurate theoretical calculation, respectively. It was found that the theoretical rovibrational energies are in a good agreement (only for the lowest numbers of vibrational states) with those obtained through experimental PEC. Another important conclusions was regarding the calculated first two rovibrational energies for the H 2 O−Ar system, that are in a good agreement with the experimental data.

Experimental potential energy curves for H2O−He, H2O−Ne, H2O−Kr, and H2O−Xe systems and its vibrational states

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Müller Dethlefs K, Hobza P (2000) Chem Rev 100:143

    Article  Google Scholar 

  2. Jeffrey G (1997) An Introduction to Hydrogen Bonding. Oxford University Press, New York

    Google Scholar 

  3. Desiraju G, Steiner T (1999) The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press, Oxford

    Google Scholar 

  4. Grabowski S (ed) (2006) Hydrogen Bonding - New Insights. Springer, Dordrecht

  5. Finney JL (2001) J Mol Liquids 90:303

    Article  CAS  Google Scholar 

  6. Guillot B (2002) J Mol Liquids 101:219

    Article  CAS  Google Scholar 

  7. Reed A, Curtiss L, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  8. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887

    Article  CAS  Google Scholar 

  9. van der Vaart A, Merz K Jr. (2002) J Chem Phys 116:7380

    Article  CAS  Google Scholar 

  10. Khaliullin R, Bell AT, Head-Gordon M (2009) Chem Eur J 15:851

    Article  CAS  Google Scholar 

  11. Sennikov PG, Ignatov SK, Schrems O (2005) Chem Phys Chem 6:393

    Google Scholar 

  12. Pfeilsticker K, Lotter A, Peters C, Bosch H (2003) Science 299:1329

    Article  Google Scholar 

  13. Kjaergard H, Robinson T, Howard D, Daniel J, Headrick J, Vaida V (2003) J Phys Chem 107:10680

    Article  Google Scholar 

  14. Kuma S, Slipchenko M, Kuyanov K, Momose T, Vilesov A (2006) J Phys Chem 110:10046

    Article  CAS  Google Scholar 

  15. Pirani F, Maciel GS, Cappelletti D, Aquilanti V (2006) Int Rev Phys Chem 25:165

    Article  CAS  Google Scholar 

  16. Hodges M, Wheatley R, Harvey A (2002) J Chem Phys 116:1397

    Article  CAS  Google Scholar 

  17. Bickes R W Jr., Duquette G, van den Meijdenberg CJN, Rulis AM, Scoles G, Smith KM (1975) J Phys B 8:3074

    Article  Google Scholar 

  18. Slankas J, Keil M, Kuppermann A (1979) J Chem Phys 70:1482

    Article  CAS  Google Scholar 

  19. Brudermann J, Steinbach C, Buck U, Patkowski K, Moszynski R (2002) J Chem Phys 117:11166

    Article  CAS  Google Scholar 

  20. Patkowski K, Korona T, Moszynski R, Jeziorski B, Szalewicz K (2002) J Mol Struct (Theochem) 591:231

    Article  CAS  Google Scholar 

  21. Calderoli G, Cragnoni F, Raimondi M (2003) Chem Phys Lett 370:233

    Article  Google Scholar 

  22. Cappelletti D, Aquilanti V, Cornicchi E, Moix-Teixidor M, Pirani F (2005) J Chem Phys 106:024302

    Article  Google Scholar 

  23. Cohen RC, Saykally RJ (1993) J Chem Phys 98:6007

    Article  CAS  Google Scholar 

  24. Chalasinski G, Szczesniak M, Scheiner S (1991) J Chem Phys 94:2807

    Article  CAS  Google Scholar 

  25. Bulski M, Wormer P, van der Avoird A (1991) J Chem Phys 94:8096

    Article  CAS  Google Scholar 

  26. Tao FM, Klemperer W (1994) J Chem Phys 101:1129

    Article  CAS  Google Scholar 

  27. Burcl R, Chalasinski G, Bukowski R, Szczesniak MM (1995) J Chem Phys 103:1498

    Article  CAS  Google Scholar 

  28. Hodges M, Wheatley R, Harvey A (2002) J Chem Phys 117:7169

    Article  CAS  Google Scholar 

  29. van Wijngaarden J, Jäger W (2000) Mol Phys 98:1575

    Article  CAS  Google Scholar 

  30. Wen Q, Jäger W (2006) J Phys Chem A 110:7560

    Article  CAS  Google Scholar 

  31. Roncaratti LF, Belpassi L, Cappelletti D, Pirani F, Tarantelli F (2009) J Phys Chem A 113:15223

    Article  CAS  Google Scholar 

  32. Pirani F, Brizi S, Roncaratti LF, Casavecchia P, Cappelletti D, Vecchiocativi F (2008) Phys Chem Chem Phys 10:5489

    Article  CAS  Google Scholar 

  33. Makarewicz J (2008) J Chem Phys 129:184310

    Article  Google Scholar 

  34. Wang L, Yang M (2008) J Chem Phys 129:174305

    Article  Google Scholar 

  35. Aquilanti V, Cappelletti D, Pirani F, Roncaratti LF (2009) Int J Mass Spectr 280:72

    Article  CAS  Google Scholar 

  36. Belpassi L, Reca M, Tarantelli F, Roncaratti LF, Pirani F, Cappelletti D, Faure A, Scribano Y (2010) J Am Chem Soc 132:13046

    Article  CAS  Google Scholar 

  37. Cappelletti D, Candori P, Roncaratti LF, Pirani F (2010) Mol Phys 108:2179

    Article  CAS  Google Scholar 

  38. Cappelletti D, Ronca E, Belpassi L, Tarantelli F, Pirani F (2012) Acc Chem Res 45:1571

    Article  CAS  Google Scholar 

  39. Andrianov I (2004) Mod Phys Lett A 19:2047

    Article  Google Scholar 

  40. Neto JJS, Costa LS (1998) Braz J Phys 111:28

    Google Scholar 

  41. Szabo A, Ostlund NS (1996) Modern Quantum Chemistry. Dover Publications, INC, Minoela

    Google Scholar 

  42. Whitnell RM, Light JC (1989) J Chem Phys 89:3674

    Article  Google Scholar 

  43. Murrel JN, Carter S, Farantos SC, Huxley P, Varandas AJC (1984) Molecular Potential Energy Functions. Wiley, Chinchester

    Google Scholar 

  44. Vila HVR, Luciano AL, Ribeiro LA Jr., Martins JBL, e Silva GM, Gargano R (2012) J Mol Spect 273:29

    Google Scholar 

  45. Dunham JL (1932) Phys Rev 41:721

    Article  CAS  Google Scholar 

  46. Roncaratti LF (2009) Quantum efects in molecular scattering experements: Characterization of the interaction in weakly bound complexes. Universita Degli di Perugia

  47. Liu X, Xu Y (2014) J Mol Spect 301:1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Gargano.

Additional information

This paper belongs to Topical Collection Brazilian Symposium of Theoretical Chemistry (SBQT2013)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha, W.F., de Oliveira, R.M., Roncaratti, L.F. et al. Rovibrational energies and spectroscopic constants for H2O−Ng complexes. J Mol Model 20, 2498 (2014). https://doi.org/10.1007/s00894-014-2498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2498-8

Keywords

Navigation