Skip to main content

Advertisement

Log in

Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

G-protein-coupled receptors (GPCRs) are currently one of the largest families of drug targets. The constitutive activation induced by mutation of key GPCR residues is associated closely with various diseases. However, the structural basis underlying such activation and its role in drug binding has remained unclear. Herein, we used all-atom molecular dynamics simulations and free energy calculations to study the effects of a D130N mutation on the structure of β2 adrenergic receptor (β2AR) and its binding of the agonist salbutamol. The results indicate that the mutation caused significant changes in some key helices. In particular, the mutation leads to the departure of transmembrane 3 (TM3) from transmembrane 6 (TM6) and marked changes in the NPxxY region as well as the complete disruption of a key ionic lock, all of which contribute to the observed constitutive activation. In addition, the D130N mutation weakens some important H-bonds, leading to structural changes in these regions. Binding free energy calculations indicate that van der Waals and electrostatic interactions are the main driving forces in binding salbutamol; however, binding strength in the mutant β2AR is significantly enhanced mainly through modifying electrostatic interactions. Further analysis revealed that the increase in binding energy upon mutation stems mainly from the H-bonds formed between the hydroxyl group of salbutamol and the serine residues of TM5. This observation suggests that modifications of the H-bond groups of this drug could significantly influence drug efficacy in the treatment of diseases associated with this mutation.

All-atom molecular dynamics simulation and free energy calculations were used to study the effects of the D130N mutation on the structure of β2 adrenergic receptor (β2AR) and its binding with salbutamol agonist. The results indicate that the mutation induces significant changes in some important regions and favors agonist binding mainly through increasing non-bond electrostatic interactions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) Identification of G protein-coupled receptor genes from the human genome sequence. FEBS Lett 520(1):97–101

    Article  CAS  Google Scholar 

  2. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256–1272

    Article  CAS  Google Scholar 

  3. Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54(13):4283–4311

    Article  CAS  Google Scholar 

  4. Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90–113

    Article  CAS  Google Scholar 

  5. Arvanitakis L, Geras-Raaka E, Gershengorn MC (1998) Constitutively signaling G-protein-coupled receptors and human disease. Trends Endocrinol Metab 9(1):27–31

    Article  CAS  Google Scholar 

  6. Thompson MD, Burnham WM, Cole DE (2005) The G protein-coupled receptors: pharmacogenetics and disease. Crit Rev Clin Lab Sci 42(4):311–392

    Article  CAS  Google Scholar 

  7. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343(6256):364–366

    Article  CAS  Google Scholar 

  8. Rao VR, Cohen GB, Oprian DD (1994) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367(6464):639–642

    Article  CAS  Google Scholar 

  9. Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD (1992) Constitutively active mutants of rhodopsin. Neuron 9(4):719–725

    Article  CAS  Google Scholar 

  10. Themmen APN, Martens JWM, Brunner HG (1997) Gonadotropin receptor mutations. J Endocrinol 153(2):179–183

    Article  CAS  Google Scholar 

  11. Van Sande J, Parma J, Tonacchera M, Swillens S, Dumont J, Vassart G (1995) Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J Clin Endocrinol Metab 80(9):2577–2585

    Google Scholar 

  12. Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, DeVree BT, Rosenbaum DM, Thian FS, Kobilka TS (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469(7329):175–180

    Article  CAS  Google Scholar 

  13. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265

    Article  CAS  Google Scholar 

  14. Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454(7201):183–187

    Article  CAS  Google Scholar 

  15. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AGW, Tate CG, Schertler GFX (2008) Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491

    Article  CAS  Google Scholar 

  16. Rasmussen SGF, Jensen AD, Liapakis G, Ghanouni P, Javitch JA, Gether U (1999) Mutation of a highly conserved aspartic acid in the β2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol Pharmacol 56(1):175–184

    CAS  Google Scholar 

  17. Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11(1):1–20

    Article  CAS  Google Scholar 

  18. Xue WW, Pan DB, Yang Y, Liu HX, Yao XJ (2012) Molecular modeling study on the resistance mechanism of HCV NS3/4A serine protease mutants R155K, A156V and D168A to TMC435. Antivir Res 93(1):126–137

    Article  CAS  Google Scholar 

  19. Yang M-J, Pang XQ, Zhang X, Han KL (2011) Molecular dynamics simulation reveals preorganization of the chloroplast FtsY towards complex formation induced by GTP binding. J Struct Biol 173(1):57–66

    Article  CAS  Google Scholar 

  20. Zhu LJ, Yang W, Meng YY, Xiao XC, Guo YZ, Pu XM, Li ML (2012) Effects of organic solvent and crystal water on γ-chymotrypsin in acetonitrile media: observations from molecular dynamics simulation and DFT calculation. J Phys Chem B 116(10):3292–3304

    Article  CAS  Google Scholar 

  21. Li MH, Luo Q, Li ZS (2010) Molecular dynamics study on the interactions of porphyrin with two antiparallel human telomeric quadruplexes. J Phys Chem B 114(18):6216–6224

    Article  CAS  Google Scholar 

  22. Li Z, Cai YH, Cheng YK, Lu X, Shao YX, Li XS, Liu M, Liu PQ, Luo H-B (2013) Identification of novel phosphodiesterase-4D inhibitors prescreened by molecular dynamics-augmented modeling and validated by bioassay. J Chem Inf Model 53(4):972–981

    Article  CAS  Google Scholar 

  23. Vilar S, Karpiak J, Berk B, Costanzi S (2011) In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor. J Mol Graph Model 29(6):809–817

    Article  CAS  Google Scholar 

  24. Johnston JM, Filizola M (2011) Showcasing modern molecular dynamics simulations of membrane proteins through G protein-coupled receptors. Curr Opin Struc Biol 21(4):552–558

    Article  CAS  Google Scholar 

  25. Rubenstein RC, Wong S, Ross E (1987) The hydrophobic tryptic core of the beta-adrenergic receptor retains Gs regulatory activity in response to agonists and thiols. J Biol Chem 262(34):16655–16662

    CAS  Google Scholar 

  26. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  Google Scholar 

  27. Filizola M, Wang SX, Weinstein H (2006) Dynamic models of G-protein coupled receptor dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics simulations in a POPC bilayer. J Comput Aided Mol Des 20(7–8):405–416

    Article  CAS  Google Scholar 

  28. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012

    Article  CAS  Google Scholar 

  29. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  30. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  31. Berendsen HJ, Postma JPM, van Gunsteren WF, DiNola A, Haak J (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  32. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  33. York D, Darden T, Pedersen L, Anderson M (1993) Molecular dynamics simulation of HIV-1 protease in a crystalline environment and in solution. Biochemistry 32(6):1443–1453

    Article  CAS  Google Scholar 

  34. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593

    Article  CAS  Google Scholar 

  35. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  36. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  Google Scholar 

  37. Wang JM, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  Google Scholar 

  38. Miller BR III, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8(9):3314–3321

    Article  CAS  Google Scholar 

  39. Rastelli G, Degliesposti G, Del Rio A, Sgobba M (2009) Binding estimation after refinement, a new automated procedure for the refinement and rescoring of docked ligands in virtual screening. Chem Biol Drug Des 73(3):283–286

    Article  CAS  Google Scholar 

  40. Lafont V, Armstrong AA, Ohtaka H, Kiso Y, Mario Amzel L, Freire E (2007) Compensating enthalpic and entropic changes hinder binding affinity optimization. Chem Biol Drug Des 69(6):413–422

    Article  CAS  Google Scholar 

  41. Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu HF, Borhani DW, Shaw DE (2011) Activation mechanism of the β2-adrenergic receptor. Proc Natl Acad Sci USA 108(46):18684–18689

    Article  CAS  Google Scholar 

  42. Porter JE, Perez DM (1999) Characteristics for a salt-bridge switch mutation of the alpha(1b) adrenergic receptor—altered pharmacology and rescue of constitutive activity. J Biol Chem 274(49):34535–34538

    Article  CAS  Google Scholar 

  43. Befort K, Zilliox C, Filliol D, Yue SY, Kieffer BL (1999) Constitutive activation of the δ opioid receptor by mutations in transmembrane domains III and VII. J Biol Chem 274(26):18574–18581

    Article  CAS  Google Scholar 

  44. Huang P, Visiers I, Weinstein H, Liu-Chen L-Y (2002) The local environment at the cytoplasmic end of TM6 of the μ opioid receptor differs from those of rhodopsin and monoamine receptors: introduction of an ionic lock between the cytoplasmic ends of helices 3 and 6 by a L6. 30 (275) E mutation inactivates the μ opioid receptor and reduces the constitutive activity of its t6. 34 (279) k mutant. Biochemistry 41(40):11972–11980

    Article  CAS  Google Scholar 

  45. Kim JM, Altenbach C, Kono M, Oprian DD, Hubbell WL, Khorana HG (2004) Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge. Proc Natl Acad Sci USA 101(34):12508–12513

    Article  CAS  Google Scholar 

  46. Dror RO, Arlow DH, Borhani DW, Jensen MØ, Piana S, Shaw DE (2009) Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci USA 106(12):4689–4694

    Article  CAS  Google Scholar 

  47. Vanni S, Neri M, Tavernelli I, Rothlisberger U (2010) A conserved protonation-induced switch can trigger “ionic-lock” formation in adrenergic receptors. J Mol Biol 397(5):1339–1349

    Article  CAS  Google Scholar 

  48. Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK (1997) Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor. EMBO J 16(22):6737–6747

    Article  CAS  Google Scholar 

  49. Wong CF, Kua J, Zhang Y, Straatsma TP, McCammon JA (2005) Molecular docking of balanol to dynamics snapshots of protein kinase A. Proteins 61(4):850–858

    Article  CAS  Google Scholar 

  50. Bhattacharya S, Hall SE, Li H, Vaidehi N (2008) Ligand-stabilized conformational states of human β2 adrenergic receptor: insight into G-protein-coupled receptor activation. Biophys J 94(6):2027–2042

    Article  CAS  Google Scholar 

  51. Ballesteros J, Kitanovic S, Guarnieri F, Davies P, Fromme BJ, Konvicka K, Chi L, Millar RP, Davidson JS, Weinstein H (1998) Functional microdomains in G-protein-coupled receptors the conserved arginine-cage motif in the gonadotropin-releasing hormone receptor. J Biol Chem 273(17):10445–10453

    Article  CAS  Google Scholar 

  52. Barak LS, Tiberi M, Freedman NJ, Kwatra MM, Lefkowitz RJ, Caron MG (1994) A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J Biol Chem 269(4):2790–2795

    CAS  Google Scholar 

  53. Barak LS, Menard L, Ferguson SS, Colapietro A-M, Caron MG (1995) The conserved seven-transmembrane sequence NP (X) 2, 3Y of the G-protein-coupled receptor superfamily regulates multiple properties of the. beta. 2-adrenergic receptor. Biochemistry 34(47):15407–15414

    Article  CAS  Google Scholar 

  54. Dixon R, Sigal I, Strader C (1988) Structure-function analysis of the β-adrenergic receptor. Cold Spring Harbor Symp Quant Biol 53:487–497

    Article  CAS  Google Scholar 

  55. Gabilondo AM, Krasel C, Lohse MJ (1996) Mutations of Tyr326 in the β 2-adrenoceptor disrupt multiple receptor functions. Eur J Pharmacol 307(2):243–250

    Article  CAS  Google Scholar 

  56. Simpson LM, Wall ID, Blaney FE, Reynolds CA (2011) Modeling GPCR active state conformations: the β2‐adrenergic receptor. Proteins 79(5):1441–1457

    Article  CAS  Google Scholar 

  57. Warrell D, Robertson D, Howes JN, Conolly M, Paterson J, Beilin L, Dollery C (1970) Comparison of cardiorespiratory effects of isoprenaline and salbutamol in patients with bronchial asthma. BMJ 1(5688):65–70

    Article  CAS  Google Scholar 

  58. Ekue JK, Shanks R, Zaidi S (1971) Comparison of the effects of isoprenaline, orciprenaline, salbutamol and isoetharine on the cardiovascular system of anaesthetized dogs. Br J Pharmacol 43(1):23–31

    Article  CAS  Google Scholar 

  59. Fraser CM, Chung FZ, Wang CD, Venter JC (1988) Site-directed mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. Proc Natl Acad Sci USA 85(15):5478–5482

    Article  CAS  Google Scholar 

  60. Deng NJ, Cieplak P (2009) Insights into affinity and specificity in the complexes of α-lytic protease and its inhibitor proteins: binding free energy from molecular dynamics simulation. Phys Chem Chem Phys 11(25):4968–4981

    Article  CAS  Google Scholar 

  61. Soriano-Ursúa MA, Trujillo-Ferrara JG, Correa-Basurto J, Vilar S (2013) Recent structural advances of β1 and β2 adrenoceptors yield keys for ligand recognition and drug design. J Med Chem 56(21):8207–8223

    Article  Google Scholar 

  62. Liapakis G, Ballesteros JA, Papachristou S, Chan WC, Chen X, Javitch JA (2000) The forgotten serine a critical role for Ser-2035.42 in ligand binding to and Activation of the β2-adrenergic receptor. J Biol Chem 275(48):37779–37788

    Article  CAS  Google Scholar 

  63. Sato T, Kobayashi H, Nagao T, Kurose H (1999) Ser203 as well as Ser204 and Ser207 in fifth transmembrane domain of the human β2‐adrenoceptor contributes to agonist binding and receptor activation. Brit J Pharmacol 128(2):272–274

    Article  CAS  Google Scholar 

  64. Del Carmine R, Molinari P, Sbraccia M, Ambrosio C, Costa T (2004) “Induced-fit” mechanism for catecholamine binding to the β2-adrenergic receptor. Mol Pharmacol 66(2):356–363

    Article  Google Scholar 

  65. Bhattacharya S, Vaidehi N (2010) Computational mapping of the conformational transitions in agonist selective pathways of a G-protein coupled receptor. J Am Chem Soc 132(14):5205–5214

    Article  CAS  Google Scholar 

  66. Wieland K, Zuurmond HM, Krasel C, Ijzerman AP, Lohse MJ (1996) Involvement of Asn-293 in stereospecific agonist recognition and in activation of the beta 2-adrenergic receptor. Proc Natl Acad Sci USA 93(17):9276–9281

    Article  CAS  Google Scholar 

  67. Hannawacker A, Krasel C, Lohse MJ (2002) Mutation of Asn293 to Asp in transmembrane helix VI abolishes agonist-induced but not constitutive activity of the β2-adrenergic receptor. Mol Pharmacol 62(6):1431–1437

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was supported by the National Science Foundation of China (Grant No. 21273154, U1230121).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuemei Pu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Yuan, Y., Xiao, X. et al. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation. J Mol Model 20, 2491 (2014). https://doi.org/10.1007/s00894-014-2491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2491-2

Keywords

Navigation