Skip to main content
Log in

Size dependent structural, electronic, and magnetic properties of ScN (N=2-14) clusters investigated by density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Structural, electronic, and magnetic properties of ScN (N=2-14) clusters have been investigated using density functional theory (DFT) calculations. Different spin states isomer for each cluster size has been optimized with symmetry relaxation. The structural stability, dissociation energy, binding energy, spin stability, vertical ionization energy, electron affinity, chemical hardness, and size dependent magnetic moment per atom are calculated for the energetically most stable spin isomer for each size. The structural stability for a specific size cluster has been explained in terms of atomic shell closing effect, close packed symmetric structure, and chemical bonding. Spin stability of each cluster size is determined by calculating the value of spin gaps. The maximum value for second-order energy difference is observed for the clusters of size N = 2, 6, 11, and 13, which implies that these clusters are relatively more stable. The magnetic moment per atom corresponding to lowest energy structure has also been calculated. The magnetic moment per atom corresponding to lowest energy structures has been calculated. The calculated values of magnetic moment per atom vary in an oscillatory fashion with cluster size. The calculated results are compared with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alonso JA (2005) Structure and properties of atomic nanoclusters, Chapt 5. Magnetic properties of atomic clusters of the transition elements. Imperial College Press, London, pp 191–210

    Book  Google Scholar 

  2. Guet C, Hobza P, Spiegelman F, David D (eds) (2001) Atomic clusters and nanoparticles. NATO Advanced Study Institute, les Houches Session LXXIII, les Houches (2000). EDP Sciences and Springer, Berlin

  3. Mei Wang, Xiaowei Haung, Zuliang Du, Yuncai Li (2009) Chem Phys Lett 258–264

  4. Reinhard P-G, Suraud E (2004) Introduction to cluster dynamics. Wiley-VCH, Weinheim

    Google Scholar 

  5. Baletto F, Ferrando R (2005) Rev Mod Phys 77:371

    Article  CAS  Google Scholar 

  6. Cramer CJ, Thrular DG (2009) Phys Chem Chem Phys 11:10757

    Article  CAS  Google Scholar 

  7. Knickelbein MB (2005) Phys Rev B 70:014424

    Article  Google Scholar 

  8. Cox AJ, Louderback JG, Bloomfield LA (1993) Phys Rev Lett 71:923

    Article  CAS  Google Scholar 

  9. Knickelbein MB (2004) Phys Rev B 71:184442

    Article  Google Scholar 

  10. Bobadova-Parvanova P, Jackson KA, Srinivas S, Horoi M (2005) J Chem Phys 122:014310

    Article  CAS  Google Scholar 

  11. Srinivas S, Horoi M, Kohler C, Seifert G (2002) ibid 116:3576

    Google Scholar 

  12. Kabir M, Mookerjee A, Kanhere DG (2006) Phys Rev B 73:224439

    Article  Google Scholar 

  13. Polesya S, Sipr O, Bornemann S, Minar J, Ebert H (2006) Europhys Lett 74:1074

    Article  CAS  Google Scholar 

  14. Himpsel FJ, Ortega JE, Mankey GJ, Wills RF (1998) Adv Phys 47:511

    Article  CAS  Google Scholar 

  15. Dunlap BI (1990) Phys Rev A 41:5691

    Article  CAS  Google Scholar 

  16. Lyalin A, Solov’yov AV, Greiner W (2006) Phys Rev A 74:043201

    Article  Google Scholar 

  17. Wu ZJ, Zhang HJ, Meng J, Dai ZW, Han B, Jin PC (2004) J Chem Phys 121:4699

    Article  CAS  Google Scholar 

  18. Papai MC (1997) Chem Phys Lett 267:551

    Article  CAS  Google Scholar 

  19. Papas BN, Schaefer HF III (2005) J Chem Phys 123:074321

    Article  Google Scholar 

  20. Wang J (2007) Phys Rev B 75:155422

    Article  Google Scholar 

  21. Ham FS (1972) In: Geschwind S (ed) Electron paramagnetic resonance. Plenum, New York, p 1

  22. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  23. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  24. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  25. Koshelev A, Shutovich A, Solov’yov IA, Solov’yov AV, Greiner W (2003) Phys Rev Lett 90:053401

    Article  Google Scholar 

  26. Solov’yov IA, Solov’yov AV, Greiner W (2004) Int J Mod Phys E 13:697

    Article  Google Scholar 

  27. Obolensky OI, Solov’yov IA, Solov’yov AV, Greiner W (2005) Comput Lett 1:313

    Article  CAS  Google Scholar 

  28. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Computational models. Gaussian Inc, Wallingford

    Google Scholar 

  29. Akeby H, Pettersson LGM (1993) J Mol Spectrosc 159:17

    Article  Google Scholar 

  30. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  31. Darke GWF (2006) Atomic, molecular and optical physics. Springer, Berlin

  32. Wang Q, Sun Q, Yu J-Z, Gu B-L, Kawazoe Y, Hashi Y (2000) Phys Rev A 62:063203

    Article  Google Scholar 

  33. Lyalin A, Solov’yov IA, Solov’yov AV, Greiner W (2003) Phys Rev A 67:063203

    Article  Google Scholar 

  34. Lyalin A, Solov’yov AV, Bréchignac C, Greiner W (2005) Phys Rev B 38:L129

    CAS  Google Scholar 

  35. Fu-Yang T, Qun J, Yuan-Xu W (2008) Phys Rev A 77:013202

    Article  Google Scholar 

  36. Simons J, Jordon K (1987) Chem Rev 87:535

    Article  CAS  Google Scholar 

  37. Shankar R, Senthilkumar K, Kolandaivel P (2009) Int J Quantum Chem 109:764–771

    Article  CAS  Google Scholar 

  38. Smith JM (1965) J Am Inst Aeronaut Astronaut 3:648

    Article  CAS  Google Scholar 

  39. Wood MD (1981) Phys Rev Lett 46:749

    Article  CAS  Google Scholar 

  40. Kolandaivel P, Jayakumar N (2000) Int J Quantum Chem 76:648

    Article  Google Scholar 

  41. Padmanabhan J, Parthasarathi R, Subramaniam V, Chattaraj PK (2005) J Phys Chem A 109:11043

    Article  CAS  Google Scholar 

  42. Senthilkumar K, Kolandaivel P (2002) J Mol Phys 100:3817

    Article  CAS  Google Scholar 

  43. de Heer WA, Knight WD, Chou MY, Cohen ML (1987) Solid State Phys 40:93

    Google Scholar 

  44. Popov AP, Pappas DP, Anisimov AN, Khanna SN (1996) Phys Rev Lett 76:4332–4335

    Article  Google Scholar 

  45. Koster AM, Calaminici P, Orgaz E, Roy DR, Reveles JU, Khanna SN (2011) J Am Chem Soc 133:12192

    Article  CAS  Google Scholar 

  46. Billas IML, Chatelain A, de Heer WD (1994) Science 265:1682

    Article  CAS  Google Scholar 

  47. Billas IML, Chatelain A, de Heer WD (1997) J Magn Magn Mater 168:64

    Article  CAS  Google Scholar 

  48. Apsel SE, Emmert JW, Deng J, Bloomfield LA (1996) Phys Rev Lett 76:1441

    Article  CAS  Google Scholar 

  49. Knickelbein MB (2002) J Chem Phys 116:9703

    Article  CAS  Google Scholar 

  50. Cox AJ, Lourderback JG, Apsel SE, Bloomfield LA (1994) Phys Rev B 49:12295

    Article  CAS  Google Scholar 

  51. Friedel J (1969) Transition metals. Electronic structure of the d-band. Its role in the crystalline and magnetic structures. In: Ziman JM (ed) The physics of metals. Cambridge University Press, Cambridge, pp 340–408

    Google Scholar 

  52. Jensen P, Bennemann KH (1995) Z Phys D 35:273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SB and AKO are thankful to the Council of Scientific and Industrial Research (CSIR) for providing financial support through project grant number No. 03(1179)/10/EMR-II. NV would like to acknowledge DST, New Delhi, India for granting Fast-Track Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Animesh K. Ojha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 149 kb)

ESM 2

(PDF 648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, S., Vyas, N., Sahu, C. et al. Size dependent structural, electronic, and magnetic properties of ScN (N=2-14) clusters investigated by density functional theory. J Mol Model 20, 2481 (2014). https://doi.org/10.1007/s00894-014-2481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2481-4

Keywords

Navigation