Skip to main content
Log in

Structural characteristics of liquid nitromethane at the nanoscale confinement in carbon nanotubes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The stability of energetic materials confined in the carbon nanotubes can be improved at ambient pressure and room temperature, leading to potential energy storage and controlled energy release. However, the microscopic structure of confined energetic materials and the role played by the confinement size are still fragmentary. In this study, molecular dynamics simulations have been performed to explore the structural characteristics of liquid nitromethane (NM), one of the simplest energetic materials, confined in a series of armchair single-walled carbon nanotubes (SWNTs) changing from (5,5) to (16,16) at ambient conditions. The simulation results show that the size-dependent ordered structures of NM with preferred orientations are formed inside the tubular cavities driven by the van der Waals attractions between NM and SWNT together with the dipole-dipole interactions of NM, giving rise to a higher local mass density than that of bulk NM. The NM dipoles prefer to align parallel along the SWNT axis in an end-to-end fashion inside all the nanotubes except the (7,7) SWNT where a unique staggered orientation of NM dipoles perpendicular to the SWNT axis is observed. As the SWNT radius increases, the structural arrangements and dipole orientations of NM become disordered as a result of the weakening of van der Waals interactions between NM and SWNT.

Ordered structures of liquid nitromethane with preferred orientations are formed at the confinement in carbon nanotubes, which is dependent on the confinement size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eremets MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R (2004) Nat Mater 3:558–563

    Article  CAS  Google Scholar 

  2. Christe KO (2007) Propellants, Explos, Pyrotech 32:194–204

    Article  CAS  Google Scholar 

  3. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  4. Khlobystov AN, Britz DA, Briggs GAD (2005) Acc Chem Res 38:901–909

    Article  CAS  Google Scholar 

  5. Abou-Rachid H, Hu A, Timoshevskii V, Song Y, Lussier LS (2008) Phys Rev Lett 100:196401

    Article  Google Scholar 

  6. Ji W, Timoshevskii V, Guo H, Abou-Rachid H, Lussier LS (2009) Appl Phys Lett 95:021904

    Article  Google Scholar 

  7. Timoshevskii V, Ji W, Abou-Rachid H, Lussier LS, Guo H (2009) Phys Rev B 80:115409

    Article  Google Scholar 

  8. Zheng FW, Yang Y, Zhang P (2012) Int J Mod Phys B 26:1250047

    Article  Google Scholar 

  9. Sharma H, Garg I, Dharamvir K, Jindal VK (2010) J Phys Chem C 114:9153–9160

    Article  CAS  Google Scholar 

  10. Smeu M, Zahid F, Ji W, Guo H, Jaidann M, Abou-Rachid H (2011) J Phys Chem C 115:10985–10989

    Article  CAS  Google Scholar 

  11. Alper HE, Abu-Awwad F, Politzer P (1999) J Phys Chem B 103:9738–9742

    Article  CAS  Google Scholar 

  12. Sorescu DC, Rice BM, Thompson DL (2000) J Phys Chem B 104:8406–8419

    Article  CAS  Google Scholar 

  13. Sorescu DC, Rice BM, Thompson DL (2001) J Phys Chem A 105:9336–9346

    Article  CAS  Google Scholar 

  14. Alavi S, Thompson DL (2004) J Chem Phys 120:10231–10239

    Article  CAS  Google Scholar 

  15. Kabadi VN, Rice BM (2004) J Phys Chem A 108:532–540

    Article  CAS  Google Scholar 

  16. Megyes T, Bálint S, Grósz T, Radnai T, Bakó I, Almásy L (2007) J Chem Phys 126:164507

    Article  Google Scholar 

  17. Appalakondaiah S, Vaitheeswaran G, Lebègue S (2013) J Chem Phys 138:184705

    Article  CAS  Google Scholar 

  18. Siavosh-Haghighi A, Thompson DL (2006) J Chem Phys 125:184711

    Article  Google Scholar 

  19. Siavosh-Haghighi A, Sewell TD, Thompson DL (2010) J Chem Phys 133:194501

    Article  Google Scholar 

  20. Xu JC, Zhao JJ (2009) Acta Phys Sin 58:4144–4149

    CAS  Google Scholar 

  21. Chang J, Lian P, Wei DQ, Chen XR, Zhang QM, Gong ZZ (2010) Phys Rev Lett 105:188302

    Article  Google Scholar 

  22. Wang LX, Yi CH, Zou HT, Xu J, Wu WL (2010) Chem Phys 367:120–126

    Article  CAS  Google Scholar 

  23. Han SP, van Duin ACT, Goddard WA, Strachan A (2011) J Phys Chem B 115:6534–6540

    Article  CAS  Google Scholar 

  24. Rom N, Zybin SV, van Duin ACT, Goddard WA, Zeiri Y, Katz G, Kosloff R (2011) J Phys Chem A 115:10181–10202

    Article  CAS  Google Scholar 

  25. Guo F, Cheng XL, Zhang H (2012) J Phys Chem A 116:3514–3520

    Article  CAS  Google Scholar 

  26. Liu LM, Car R, Selloni A, Dabbs DM, Aksay IA, Yetter RA (2012) J Am Chem Soc 134:19011–19016

    Article  CAS  Google Scholar 

  27. Zhang L, Chen L (2013) Acta Phys Sin 62:138201

    Google Scholar 

  28. Lide DR (2004) CRC handbook of chemistry and physics, 84th edn. CRC, Boca Raton

  29. Alexiadis A, Kassions S (2008) Chem Rev 108:5014–5034

    Article  CAS  Google Scholar 

  30. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) J Comput Chem 31:671–690

    CAS  Google Scholar 

  31. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  32. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) J Comput Chem 26:1781–1802

    Article  CAS  Google Scholar 

  33. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  34. Tuckerman M, Berne BJ, Martyna GJ (1992) J Chem Phys 97:1990–2001

    Article  CAS  Google Scholar 

  35. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  36. Andersen HC (1983) J Comput Phys 52:24–34

    Article  CAS  Google Scholar 

  37. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  38. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  39. Shao Q, Huang LL, Zhou J, Lu LH, Zhang LZ, Lu XH, Jiang SY, Gubbins KE, Zhu YD, Shen WF (2007) J Phys Chem C 111:15677–15685

    Article  CAS  Google Scholar 

  40. Balamurugan K, Baskar P, Kumar RM, Das S, Subramanian V (2012) J Phys Chem C 116:4365–4373

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 21403162). Thu authors also thank Prof. Yuanjie Shu for his valuable comments and constructive suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingzhe Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 474kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Lai, W., Yu, T. et al. Structural characteristics of liquid nitromethane at the nanoscale confinement in carbon nanotubes. J Mol Model 20, 2459 (2014). https://doi.org/10.1007/s00894-014-2459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2459-2

Keywords

Navigation