Skip to main content
Log in

Injection, transport, absorption and phosphorescence properties of a series of platinum (II) complexes with N-heterocyclic carbenes: a DFT and time-dependent DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The ground and excited states, charge injection/transport, and phosphorescence properties of five N‑heterocyclic carbine-functionalized PtII complexes were investigated by using the DFT method. By analyzing the nonradiative (k nr) rate constant and energies at \( {\mathrm{S}}_0^{\mathrm{opt}} \) and \( {\mathrm{T}}_1^{\mathrm{opt}} \) states, it is possible to forecast that BC5 with the pyrrole ligand has a higher phosphorescence quantum yield than any of the other four complexes. Thus, we consider that BC5 will be an efficient phosphorescent material that has balanced electron/hole-transport performance as well as high phosphorescence quantum yield. The calculated results indicate that, for the studied complexes, the nature of the ligand strongly affected the energy of the emissive state and was able to tune the emission color. We hope that our study will aid better understanding of the structure–property relationship of phosphorescent Pt (II) complexes and provide constructive information for designing novel and highly efficient OLED materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lin JJ, Liao WS, Huang HJ, Wu F, Cheng CH (2008) Adv Funct Mater 18:485–491

    Article  CAS  Google Scholar 

  2. Chen K, Yang CH, Chi Y, Liu CS, Chang CH, Chang CC, Wu CC, Chung MW, Cheng YM, Lee GH, Chou PT (2010) Chem Eur J 16:4315–4327

    Article  CAS  Google Scholar 

  3. Wang L, Wu Y, Shan GG, Geng Y, Zhang JZ, Wang DM, Yang GC, Su ZM (2014) J Mater Chem C 2:2859–2868

    Article  CAS  Google Scholar 

  4. Wong WY, Ho CL (2009) J Mater Chem 19:4457–4482

    Article  CAS  Google Scholar 

  5. Wang J, Bai FQ, Xia BH, Zhang HX, Tian C (2014) J Mol Model 20:2018–2027

    Google Scholar 

  6. Arduengo AJ III, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    Article  CAS  Google Scholar 

  7. Sajoto T, Djurovich PI, Tamayo A, Yousufuddin M, Bau R, Thompson ME, Holmes RJ, Forrest SR (2005) Inorg Chem 44:7992–8003

    Article  CAS  Google Scholar 

  8. Holmes RJ, Forrest SR, Sajoto T, Tamayo A, Djurovich PI, Thompson ME, Brooks J, Tung YJ, D’Andrade BW, Weaver MS, Kwong RC, Brown J (2005) Appl Phys Lett 87:243507–243510

    Article  Google Scholar 

  9. Chang CF, Cheng YM, Chi Y, Lin CC, Lee GH, Chou PT, Chen CC, Chang CH, Chen CC, Wu CC (2008) Angew Chem Int Ed 47:4542–4545

    Article  CAS  Google Scholar 

  10. Haneder S, Da Como E, Feldmann J, Lupton JM, Lennartz C, Erk P, Fuchs E, Molt O, Munster I, Schildknecht C, Wagenblast G (2008) Adv Mater 20:3325–3330

    Article  CAS  Google Scholar 

  11. Hsieh CH, Wu FI, Fan CH, Huang MJ, Lu KY, Chou PY, Ou Yang YH, Wu SH, Chen IC, Chou SH, Wong KT, Cheng CH (2011) Chem Eur J 17:9180–9187

    Article  CAS  Google Scholar 

  12. Sasabe H, Takamatsu J, Motoyama T, Watanabe S, Wagenblast G, Langer N, Molt O, Fuchs E, Lennartz C, Kido J (2010) Adv Mater 22:5003–5007

    Article  CAS  Google Scholar 

  13. Unger Y, Meyer D, Molt O, Schildknecht C, Münster I, Wagenblast G, Strassner T (2010) Angew Chem Int Ed 49:10214–10216

    Article  CAS  Google Scholar 

  14. Lu KY, Chou HH, Hsieh CH, Ou Yang YH, Tsai HR, Hsu LC, Chen CY, Chen IC, Cheng CH (2011) Adv Mater 23:4933–4937

    Article  CAS  Google Scholar 

  15. Unger Y, Meyer D, Strassner T (2010) Dalton Trans 39:4295–4301

    Article  CAS  Google Scholar 

  16. Zhang X, Wright AM, DeYonker NJ, Hollis TK, Hanmmer NI, Webster CE, Valente EJ (2012) J Organometallics 31:1664–1672

    Article  CAS  Google Scholar 

  17. Fukagawa H, Shimizu T, Hanashima H, Osasa Y, Suzuki M, Fujikake H (2012) Adv Mater 24:5099–5103

    Article  CAS  Google Scholar 

  18. Rausch AF, Thompson ME, Yersin H (2009) Chem Phys Lett 468:46–51

    Article  CAS  Google Scholar 

  19. Rausch AF, Yersin H (2010) Chem Phys Lett 484:261–265

    Article  CAS  Google Scholar 

  20. Fleetham T, Wang ZX, Li J (2012) Org Electron 13:1430–1435

    Article  CAS  Google Scholar 

  21. Hudson ZM, Sun C, Helander MG, Chang YL, Lu ZH, Wang S (2012) J Am Chem Soc 134:13930–13933

    Article  CAS  Google Scholar 

  22. Zhao Y, Truhlar DG (2008) Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  23. Autschbach J, Ziegler T, Gisbergen SJA, Baerends EJ (2002) J Chem Phys 116:6930–6940

    Article  CAS  Google Scholar 

  24. Helgaker T, Jørgemsen P (1991) J Chem Phys 95:2595–2601

    Article  CAS  Google Scholar 

  25. Bak K, Jørgemsen LP, Round TK, Jensen HJA (1993) J Chem Phys 98:8873–8887

    Article  CAS  Google Scholar 

  26. Canc’es E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  Google Scholar 

  27. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260

    Article  CAS  Google Scholar 

  28. Mennucci B, Tomasi J (1997) J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  29. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  30. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  31. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2010) Gaussian 09, Revision B. 01. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  33. Li XN, Wu ZJ, Si ZJ, Zhang HJ, Zhou L, Liu XJ (2009) Inorg Chem 48:7740–7749

    Article  CAS  Google Scholar 

  34. Hush RA (1958) J Chem Phys 28:962–972

    Article  CAS  Google Scholar 

  35. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  36. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  37. Tong GS, Che CM (2009) Chem Eur J 15:7225–7237

    Article  CAS  Google Scholar 

  38. Wilson JS, Chawdhury N, Al-Mandhary MRA, Younus M, Khan MS, Raithby PR, Köhler A, Friend RH (2001) J Am Chem Soc 1239412. b) H. Yersin, W. J. Finkenzeller, in Highly Efficient OLEDs with Phosphorescent Materials (Ed.: H. Yersin), Wiley-VCH, Weinheim, 2008, pp. 163.

  39. Yersin H, Finkenzeller WJ (2008) Triplet emitters for OLEDs—basic properties. In: Yersin H (ed) Highly efficient OLEDs with phosphorescent materials. Wiley-VCH, Weinheim, pp 163

  40. Dedeian K, Shi J, Shepherd N, Forsythe E, Morton DC (2005) Inorg Chem 44:4445–4447

  41. Otterstedt JEA (1973) J Chem Phys 58:5716

Download references

Acknowledgments

The authors are grateful for financial aid from the National Natural Science Foundation of China (Grant Nos. 21371165, 51372242, 91122030 and 21210001), National Natural Science Foundation for Creative Research Group (Grant No. 21221061), Jilin Province Youth Foundation (201201008), and Computing Center of Jilin Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM (DOCX 1990 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, X., Feng, J. et al. Injection, transport, absorption and phosphorescence properties of a series of platinum (II) complexes with N-heterocyclic carbenes: a DFT and time-dependent DFT study. J Mol Model 20, 2437 (2014). https://doi.org/10.1007/s00894-014-2437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2437-8

Keywords

Navigation