Skip to main content
Log in

On the chemical behavior of C60 hosting H2O and other isoelectronic neutral molecules

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The density functional theory (DFT) was used to investigate the chemical behavior of C60 hosting neutral guest molecules (NGM). The deformed atoms in molecules (DAM) allowed identifying the regions of electron density depletion and accumulation. The studied NGM are CH4, NH3, H2O, and HF. Based on dipole moment and polarizabilities analyses it is predicted that the NGM@C60 should be more soluble in polar solvents than C60. The deformations on the surface electron density of the fullerenes explain this finding, which might be relevant for further applications of these systems. It was found that the intrinsic reactivity of studied NGM@C60 is only moderately higher than that of C60. This trend is supported by the global reactivity indexes and the frontier orbitals analyses. The free radical scavenging activity of the studied systems, via single electron transfer, was found to be strongly dependent on the chemical nature of the reacting free radical. The presence of the studied NGM inside the C60 influences only to some extent the reactivity of C60 toward free radicals. The distortion of the electron density on the C60 cage, caused by the NGM, is directly related to the electron withdrawing capacity of the later.

Chemical behavior of C60 hosting H2O and other isoelectronic neutral molecules

The deformations on the surface electron density of the fullerenes explain their dipole moment andpolarizabilities, and thus their increased solubility. The presence of neutral molecules inside the cageinfluences only to some extent the reactivity of C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saunders M, Jiménez-Vázquez HA, Cross RJ, Poreda RJ (1993) Stable compounds of helium and neon: He@C60 and Ne@C60. Science 259:1428–1430

    Article  CAS  Google Scholar 

  2. Saunders M, Cross RJ, Jiménez-Vázquez HA, Shimshi R, Khong A (1996) Noble gas atoms inside fullerenes. Science 271:1693–1697

    Article  CAS  Google Scholar 

  3. Pietzak B, Waiblinger M, Almeida MT, Weidinger A, Höhne M, Dietel E, Hirsch A (1997) Buckminsterfullerene C60: a chemical faraday cage for atomic nitrogen. Chem Phys Lett 279:259–263

    CAS  Google Scholar 

  4. Shabtai E, Weitz A, Haddon RC, Hoffman RE, Rabinovitz M, Khong A, Cross RJ, Saunders M, Cheng PC, Scott LT (1998) 3He NMR of He@C60 6− and He@C70 6−. New records for the most shielded and the most deshielded 3He inside a fullerene. J Am Chem Soc 120:6389–6393

    Article  CAS  Google Scholar 

  5. Nishibori E, Takata M, Sakata M, Tanaka H, Hasegawa M, Shinohara H (2000) Giant motion of La atom inside C82 cage. Chem Phys Lett 330:497–502

    CAS  Google Scholar 

  6. Peres T, Cao B, Cui W, Khong A, Cross RJ, Saunders M, Lifshitz C (2001) Some new diatomic molecule containing endohedral fullerenes. Int J Mass Spectrom 210:241–247

    Google Scholar 

  7. Murata Y, Murata M, Komatsu K (2003) 100 % encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60. J Am Chem Soc 125:7152–7153

    Article  CAS  Google Scholar 

  8. Shimotani H, Ito T, Iwasa Y, Taninaka A, Shinohara H, Nishibori E, Takata M, Sakata M (2004) Quantum chemical study on the configurations of encapsulated metal ions and the molecular vibration modes in endohedral dimetallofullerene La2@C80. J Am Chem Soc 126:364–369

    Article  CAS  Google Scholar 

  9. Murata M, Murata Y, Komatsu K (2006) Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. J Am Chem Soc 128:8024–8033

    Article  CAS  Google Scholar 

  10. Cimpoesu F, Ito S, Shimotani H, Takagi H, Dragoe N (2011) Vibrational properties of noble gas endohedral fullerenes. Phys Chem Chem Phys 13:9609–9615

    Article  CAS  Google Scholar 

  11. Kurotobi K, Murata Y (2011) A single molecule of water encapsulated in fullerene C60. Science 333:613–616

    Article  CAS  Google Scholar 

  12. Sabirov DS (2013) From endohedral complexes to endohedral fullerene covalent derivatives: a density functional theory prognosis of chemical transformation of water endofullerene H2O@C60 upon its compression. J Phys Chem C 117:1178–1182

    Article  CAS  Google Scholar 

  13. Murata M, Murata Y, Komatsu K (2008) Surgery of fullerenes. Chem Commun 46:6083–6094

    Article  Google Scholar 

  14. Whitener KE, Frunzi M, Iwamatsu S, Murata S, Cross RJ, Saunders M (2008) Putting ammonia into a chemically opened fullerene. J Am Chem Soc 130:13996–13999

    Article  CAS  Google Scholar 

  15. Stanisky CM, Cross RJ, Saunders M (2009) Putting atoms and molecules into chemically opened fullerenes. J Am Chem Soc 131:3392–3395

    Article  CAS  Google Scholar 

  16. Balch AL (2011) H2O in a desert of carbon atoms. Science 333:531–532

    Article  Google Scholar 

  17. Beduz C, Carravetta M, Chen JYC, Concistrè M, Denning M, Frunzi M, Horsewill AJ, Johannessen OG, Lawler R, Lei X, Levitt MH, Li Y, Mamone S, Murata Y, Nagel U, Nishida T, Ollivier J, Rols S, Rõõm T, Sarkar R, Turro NJ, Yang Y (2012) Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc Natl Acad Sci 109:12894–12898

    Article  CAS  Google Scholar 

  18. Li Y, Chen JYC, Lei X, Lawler RG, Murata Y, Komatsu K, Turro NJ (2012) Comparison of nuclear spin relaxation of H2O@C60 and H2@C60 and their nitroxide derivatives. J Phys Chem Lett 3:1165–1168

    CAS  Google Scholar 

  19. Zhang R, Murata M, Wakamiya A, Murata Y (2013) Synthesis and X-ray structure of endohedral fullerene C60 dimer encapsulating a water molecule in each C60 cage. Chem Lett 42:879–881

    Article  CAS  Google Scholar 

  20. Ramachandran CN, Sathyamurthy N (2005) Water clusters in a confined nonpolar environment. Chem Phys Lett 410:348–351

    CAS  Google Scholar 

  21. Yagi K, Watanabe D (2009) Infrared spectra of water molecule encapsulated inside fullerene studied by instantaneous vibrational analysis. Int J Quantum Chem 109:2080–2090

    Article  CAS  Google Scholar 

  22. Bucher D (2012) Orientational relaxation of water trapped inside C60 fullerenes. Chem Phys Lett 534:38–42

    CAS  Google Scholar 

  23. Hernández-Rojas J, Monteseguro V, Bretón J, Gomez-Llorente JM (2012) Water clusters confined in icosahedral fullerene cavities. Chem Phys 399:240–244

    Google Scholar 

  24. Xu B, Chen X (2013) Electrical-driven transport of endohedral fullerene encapsulating a single water molecule. Phys Rev Lett 110:156103, 5 pages

    Article  Google Scholar 

  25. Rehaman A, Gagliardi L, Pyykkö P (2007) Pocket and antipocket conformations for the CH4@C84 endohedral fullerene. Int J Quantum Chem 107:1162–1169

    Article  CAS  Google Scholar 

  26. Ren XY, Jiang CY, Wang J, Liu ZY (2008) Endohedral complex of fullerene C60 with tetrahedrane, C4H4@C60. J Mol Graph Model 27:558–562

    CAS  Google Scholar 

  27. Ren XY, Jiang CY (2012) Density functional studies on the endohedral complex of fullerene C70 with tetrahedrane (C4H4): C4H4@C70. J Mol Model 18:3213–3217

    Article  CAS  Google Scholar 

  28. Wang GW, Wu P, Tian ZG (2009) Endohedral 1H NMR chemical shifts of H2-, H2O- and NH3-encapsulated fullerene compounds: accurate calculation and prediction. Eur J Org Chem 2009:1032–1041

    Article  Google Scholar 

  29. Peng S, Li XJ, Zhang DX, Zhang Y (2009) A computational study of the endohedral fullerene GeH4@C60. Struct Chem 20:789–794

    Article  CAS  Google Scholar 

  30. Medrek M, Pluciński F, Mazurek AP (2013) Endohedral complexes of fullerene C60 with small convalent molecules (H2O, NH3, H2, 2H2, 3H2, 4H2, O2, O3) in the context of potential drug transporter system. Acta Pol Pharm 70:659–665

    CAS  Google Scholar 

  31. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reactions of C60. Science 254:1183–1185

    Article  CAS  Google Scholar 

  32. McEwen CN, McKay RG, Larsen BS (1992) C60 as a radical sponge. J Am Chem Soc 114:4412–4414

    Article  CAS  Google Scholar 

  33. Gan L, Huang S, Zhang X, Zhang A, Cheng B, Cheng H, Li X, Shang G (2002) Fullerenes as a tert-butylperoxy radical trap, metal catalyzed reaction of tert-butyl hydroperoxide with fullerenes, and formation of the first fullerene mixed peroxides C60(O)(OOtBu)4 and C70(OOtBu)10. J Am Chem Soc 124:13384–13385

    Article  CAS  Google Scholar 

  34. Morton JR, Preston KF, Krusic PJ, Hill SA, Wasserman E (1992) ESR studies of the reaction of alkyl radicals with fullerene (C60). J Phys Chem 96:3576–3578

    CAS  Google Scholar 

  35. Borghi R, Lunazzi L, Placucci G, Krusic PJ, Dixon DA, Matsuzawa N, Ata M (1996) Addition of aryl and fluoroalkyl radicals to fullerene C70: ESR detection of five regioisomeric adducts and density functional calculations. J Am Chem Soc 118:7608–7617

    Article  CAS  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.08. Gaussian, Inc, Wallingford

    Google Scholar 

  37. Dunning TH, Hay PJ (1976) Modern theoretical chemistry. Schaefer HF III (ed) vol. 3, Plenum, New York, pp 1–28

  38. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  39. Burke K, Perdew JP, Wang Y (1998) In: Electronic density functional theory: recent progress and new directions. Dobson JF, Vignale G, and Das MP (eds) Plenum, New York,pp 81–111

  40. Perdew JP (1991) In: Electronic structure of solids‘91. Ziesche P and Eschrig H (eds). Akademie, Berlin, pp 11–20

  41. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  42. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    Article  CAS  Google Scholar 

  43. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    CAS  Google Scholar 

  44. López R, Fernández-Rico J, Ramírez G, Ema I, Zorrilla D (2009) DAMQT: a package for the analysis of electron density in molecules. Comput Phys Commun 180:1654–1660

    Article  Google Scholar 

  45. Lichtenberger DL, Nebesny KW, Ray CD, Huffman DR, Lamb LD (1991) Valence and core photoelectron spectroscopy of C60, buckminsterfullerene. Chem Phys Lett 176:203–208

    CAS  Google Scholar 

  46. Palpant B, Negishi Y, Sanekata M, Miyajima K, Nagao S, Judai K, Rayner DM, Simard B, Hackett PA, Nakajima A, Kaya K (2001) Electronic and geometric properties of exohedral sodium- and gold-fullerenes. J Chem Phys 114:8459–8466

    CAS  Google Scholar 

  47. Yao X, Ruskell TG, Workman RK, Sarid D, Chen D (1996) Scanning tunneling microscopy and spectroscopy of individual C60 molecules on Si(100)-2 × 1 surfaces. Surf Sci Lett 366:L743–L749

    Article  CAS  Google Scholar 

  48. Compagnon I, Antoine R, Broyer M, Dugourd P, Lermé J, Rayane D (2001) Electric polarizability of isolated C70 molecules. Phys Rev A 64:025201, 4 pages

    Article  Google Scholar 

  49. Fukui K, Yonezawa T, Shingu H (1952) A molecular orbital theory of reactivity in aromatic hydrocarbons. J Chem Phys 20:722–725

    CAS  Google Scholar 

  50. Fukui K (1971) Recognition of stereochemical paths by orbital interaction. Acc Chem Res 4:57–64

    Article  CAS  Google Scholar 

  51. Manolopoulos DE, May JC, Down SE (1991) Theoretical studies of the fullerenes: C34 to C70. Chem Phys Lett 181:105–111

    CAS  Google Scholar 

  52. Liu X, Schmalz TG, Klein DJ (1992) Favorable structures for higher fullerenes. Chem Phys Lett 188:550–554

    CAS  Google Scholar 

  53. Diener MD, Alford JM (1998) Isolation and properties of small-bandgap fullerenes. Nature 393:668–671

    Article  CAS  Google Scholar 

  54. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  55. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    CAS  Google Scholar 

  56. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  57. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107:4973–4975

    CAS  Google Scholar 

  58. Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  59. Gazquez JL, Cedillo A, Vela A (2007) Electrodonating and electroaccepting powers. J Phys Chem A 111:1966–1970

    CAS  Google Scholar 

  60. Gázquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10

    Google Scholar 

  61. Galano A, Álvarez-Diduk R, Ramírez-Silva MT, Alarcón-Ángeles G, Rojas-Hernández A (2009) Role of the reacting free radicals on the antioxidant mechanism of curcumin. Chem Phys 363:13–23

    CAS  Google Scholar 

  62. Galano A, Vargas R, Martinez A (2010) Carotenoids can act as antioxidants by oxidizing the superoxide radical anion. Phys Chem Chem Phys 12:193–200

    Article  CAS  Google Scholar 

  63. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    CAS  Google Scholar 

  64. Evans MG, Polanyi M (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  65. Truhlar DG, Hase WL, Hynes JT (1983) Current status of transition-state theory. J Phys Chem 87:2664–2682

    CAS  Google Scholar 

  66. Marcus RA (1965) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196

    Google Scholar 

  67. Marcus RA (1993) Electron transfer reactions in chemistry. Theory and experiment. Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  68. Nelsen SF, Blackstock SC, Kim Y (1987) Estimation of inner shell Marcus terms for amino nitrogen compound by molecular orbital calculations. J Am Chem Soc 109:677–682

    Article  CAS  Google Scholar 

  69. Nelsen SF, Weaver MN, Luo Y, Pladziewicz JR, Ausman LK, Jentzsch TL, O'Konek JJ (2006) Estimation of electronic coupling for intermolecular electron transfer from cross-reaction data. J Phys Chem A 110:11665–11676

    CAS  Google Scholar 

  70. Francisco-Marquez M, Galano A, Martinez A (2010) On the free radical scavenging capability of carboxylated single-walled carbon nanotubes. J Phys Chem C 114:6363–6370

    Article  CAS  Google Scholar 

  71. Martínez A, Francisco-Marquez M, Galano A (2010) Effect of different functional groups on the free radical scavenging capability of single-walled carbon nanotubes. J Phys Chem C 114:14734–14739

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. Rafael López, at Universidad Autónoma de Madrid for his valuable comments. This work was partially supported by the projects SEP-CONACyT 167491. J.R.L.-C. acknowledges the economic support of the Program of Postdoctoral Scholarships from DGAPA (UNAM). L.O. thanks Project LIQUORGAS-S2009/PPQ-1545, Comunidad de Madrid, for financial support. We thank the Laboratorio de Visualización y Cómputo Paralelo at Universidad Autónoma Metropolitana-Iztapalapa for the access to computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annia Galano.

Additional information

This paper belongs to Topical Collection QUITEL 2013

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galano, A., Pérez-González, A., del Olmo, L. et al. On the chemical behavior of C60 hosting H2O and other isoelectronic neutral molecules. J Mol Model 20, 2412 (2014). https://doi.org/10.1007/s00894-014-2412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2412-4

Keywords

Navigation