Skip to main content

Advertisement

Log in

Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Tamoxifen—an anti-estrogenic ligand in breast tissues used as a first-line treatment in estrogen receptor (ER)-positive breast cancers—is associated with the development of resistance followed by resumption of tumor growth in about 30 % of cases. Whether tamoxifen assists in proliferation in such cases or whether any ligand-independent pathway to transcription exists is not fully understood; also, no ERα mutants have been detected so far that could lead to tamoxifen resistance. Using in silico conformational analysis of the ERα ligand binding domain (LBD), in the absence and presence of selective agonist (diethylstilbestrol; DES), antagonist (Faslodex; ICI), and selective estrogen receptor modulator (SERM; 4-hydroxy tamoxifen; 4-OHT) ligands, we have elucidated ligand-responsive structural modulations of the ERα-LBD dimer in its agonist and antagonist complexes to address the issue of “tamoxifen resistance”. DES and ICI were found to stabilize the dimer in their agonist and antagonist conformations, respectively. The ERα-LBD dimer without the presence of any bound ligand also led to a stable structure in agonist conformation. However, binding of 4-OHT to the antagonist structure led to a flexible conformation allowing the protein to visit conformations populated by agonists as was evident from principal component analysis and radius of gyration plots. Further, the relaxed conformations of the 4-OHT bound protein exhibited a diminished size of the co-repressor binding pocket in the LBD, thus signaling a partial blockage of the co-repressor binding motif. Thus, the ability of 4-OHT-bound ERα-LBD to assume flexible conformations visited by agonists and reduced co-repressor binding surface at the LBD provide crucial structural insights into tamoxifen-resistance that complement our existing understanding.

4-OHT bound ERα dimer visits both antagonist and agonist conformational subspaces. The Co-repressor binding site reduces significantly in 4-OHT bound agonist conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2a–d
Fig. 3
Fig. 4a,b
Fig. 5
Fig. 6a,b
Fig. 7

Similar content being viewed by others

References

  1. World Cancer Report (2008) International Agency for Research on Cancer. http://www.iarc.fr/en/publications/pdfs-online/wcr/

  2. Katzenellenbogen BS, Kendra KL, Norman MJ, Berthois Y (1987) Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. Cancer Res 47:4355–4360

    CAS  Google Scholar 

  3. Ip M, Milholland RJ, Rosen F, Kim U (1979) Mammary cancer: selective action of the estrogen receptor comple. Science 203:361–363

    Article  CAS  Google Scholar 

  4. Andersen J, Poulsen HS (1989) Immunohistochemical estrogen receptor determination in paraffin-embedded tissue. Prediction of response to hormonal treatment in advanced breast cancer. Cancer 64:1901–1908

    Article  CAS  Google Scholar 

  5. Beato M, Herrlich P, Schutz G (1995) Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857

    Article  CAS  Google Scholar 

  6. Levin ER (2001) Cell localization, physiology, and nongenomic actions of estrogen receptors. J Appl Physiol 91:1860–1867

    CAS  Google Scholar 

  7. Vidal O, Lindberg M, Sävendahl L, Lubahn DB, Ritzen EM, Gustafsson JÅ, Ohlsson C (1999) Disproportional Body Growth in Female Estrogen Receptor-α-inactivated Mice. Biochem Biophys Res Commun 265:569–571

    Article  CAS  Google Scholar 

  8. Stender JD, Kim K, Charn TH, Komm B, Chang KCN, Kraus WL, Benner C, Glass CK, Katzenellenbogen BS (2010) Genome-wide analysis of estrogen receptor α DNA binding and tethering mechanisms identifies Runx1 as a novel tethering factor in receptor-mediated transcriptional activation. Mol Cell Biol 30:3943–3955

    Article  CAS  Google Scholar 

  9. Ruff M, Gangloff M, Wurtz JM, Moras D (2000) Estrogen receptor transcription and transactivation. Structure–function relationship in DNA- and ligand-binding domains of estrogen receptors. Breast Cancer Res 2:353–359

    Article  CAS  Google Scholar 

  10. Nadal A, Diaz M, Valverde MA (2001) The estrogen trinity: membrane, cytosolic, and nuclear effects. News Physiol Sci 16:251–255

    CAS  Google Scholar 

  11. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  Google Scholar 

  12. Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758

    Article  CAS  Google Scholar 

  13. Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937

    Article  CAS  Google Scholar 

  14. Howell A, Osborne CK, Morris C, Wakeling AE (2000) ICI 182,780 (Faslodex): development of a novel, “pure” antiestrogen. Cancer 89:817–825

    Article  CAS  Google Scholar 

  15. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. New Engl J Med 339:1609–1618

    Article  CAS  Google Scholar 

  16. Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators–mechanisms of action and application to clinical practice. New Engl J Med 348:618–629

    Article  CAS  Google Scholar 

  17. Lewis JS, Jordan VC (2005) Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance. Mutat Res 591:247–263

    Article  CAS  Google Scholar 

  18. Legault-Poisson S, Jolivet J, Poisson R, Beretta-Piccoli M, Ban PR (1979) Tamoxifen-induced tumor stimulation and withdrawal response. Cancer Treat Rep 63:1839–1841

    CAS  Google Scholar 

  19. Dorssers LCJ, Agthoven TV, Dekker A, Agthoven TLAV, Kok EM (1993) Induction of antiestrogen resistance in human breast cancer cells by random insertional mutagenesis using defective retroviruses: identification of bcar-1, a common integration site. Mol Endocrinol 7:870–878

    CAS  Google Scholar 

  20. Dorssers LCJ, Flier SVD, Brinkman A, Agthoven TV, Veldscholte J, Berns EMJJ, Klijn JGM, Beex LVAM, Foekens JA (2001) Tamoxifen resistance in breast cancer: elucidating mechanisms. Drugs 61:1721–1733

    Article  CAS  Google Scholar 

  21. Nicholson RI, Hutcheson IR, Britton D, Knowlden JM, Jones HE, Harper ME, Hiscox SE, Barrow D, Gee JM (2005) Growth factor signaling networks in breast cancer and resistance to endocrine agents: new therapeutic strategies. J Steroid Biochem Mol Biol 93:257–262

    CAS  Google Scholar 

  22. Michalides R, Griekspoor A, Balkenende A, Verwoerd D, Janssen L, Jallank K, Floore A, Velds A, Veer LV, Neefjes J (2004) Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer Cell 5:597–605

    Article  CAS  Google Scholar 

  23. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: Increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935

    Article  CAS  Google Scholar 

  24. Lavinsky RM, Jepsen K, Heinzel T, Torchia J, Mullen TM, Schiff R, Del-Rio AL, Ricote M, Ngo S, Gemsch J, Hilsenbeck SG, Osborne CK, Glass CK, Rosenfeld MG, Rose DW (1998) Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci USA 95:2920–2925

    Article  CAS  Google Scholar 

  25. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  26. Humphrey W, Dalke A, Schulten K (1996) VMD—Visual Molecular Dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  27. Berendsen HJC, Spoel DVD, Drunen RV (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 91:45–56

    Article  Google Scholar 

  28. Lindahl E, Hess B, Spoel DVD (2001) GROMACS 3.0 a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  29. Jorgensen WL, Rives T (1988) Development and testing of the OPLS all-atom force field on conformational energetic and properties of organic liquids. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  30. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web based environment for protein structure modeling. Bioinformatics 22:195–201

    Article  CAS  Google Scholar 

  31. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarkian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  32. Car R, Parrinello M (1985) Unified approach for molecular dynamics and density functional theory. Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  33. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comp Chem 18:1463–1472

    Article  CAS  Google Scholar 

  34. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  Google Scholar 

  35. Tuncbag N, Gursoy A, Keskin O (2009) Identification of computational hotspots in protein interfaces: combining solvent accessibility and inter-residue potential improves the accuracy. Bioinformatics 25:1513–1520

    Article  CAS  Google Scholar 

  36. Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  CAS  Google Scholar 

  37. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acid Res 36:W233–W238

    Article  CAS  Google Scholar 

  38. Chakraborty S, Cole S, Rader N, King C, Rajnarayanan RV, Biswas PK (2012) In silico design of peptidic inhibitors targeting Estrogen Receptor alpha dimer interface. Mol Divers 16:441–451

    Article  CAS  Google Scholar 

  39. Varlakhanova N, Snyder C, Jose S, Hahm JB, Privalsky ML (2010) Estrogen receptors recruit SMRT and N-CoR corepressor through newly recognized contacts between the compressor N-terminus and the receptor DNA binding domain. Mol Cell Biol 30:1434–1445

    Article  CAS  Google Scholar 

  40. Heldring N, Pawson T, McDonnell D, Treuter E, Gustafsson JA, Pike ACW (2007) Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 282:10449–10455

    Article  CAS  Google Scholar 

  41. Hu X, Li Y, Lazar MA (2001) Determinants of CoRNR-dependent repression complex assembly on nuclear hormone receptors. Mol Cell Biol 21:1747–1758

    Article  CAS  Google Scholar 

  42. Tamrazi A, Carlson KE, Daniels JR, Hurth KM, Katzenellenbogen JA (2002) Estrogen receptor dimerization: ligand binding regulates dimer affinity and dimer dissociation rate. Mol Endocrinol 16:2706–2719

    Article  CAS  Google Scholar 

  43. Pike ACW, Brzozowski AM, Walton J, Hubbard RE, Thorsell A-G, Li Y-L, Gustafsson J-A, Carlquist M (2001) Structural insights into the mode of action of a pure antiestrogen. Structure 9:145–153

  44. Chan CM, Lykkesfeldt AE, Parker MG, Dowsett M (1999) Expression of nuclear receptor interacting proteins TIF-1, SUG-1, receptor interacting protein 140, and corepressor SMRT in tamoxifen-resistant breast cancer. Clin Cancer Res 5:3460–3467

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Mississippi IDeA Networks of Biomedical Research Excellence (MS-INBRE) funded by National Center for Research Resources/National Institutes of Health (NCRR/NIH; 5P20RR016476-11) and National Institute of General Medical Sciences (NIGMS/NIH; 8 P20 GM103476-11). P.K.B. acknowledges additional support from Experimental Program to Stimulate Competitive Research (EPSCoR) (EPS-0903787; Sub-contract: 190200-362492-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Kumar Biswas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Biswas, P.K. Structural insights into selective agonist actions of tamoxifen on human estrogen receptor alpha. J Mol Model 20, 2338 (2014). https://doi.org/10.1007/s00894-014-2338-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2338-x

Keywords

Navigation