Skip to main content
Log in

Theoretical studies of separation of cis–trans isomers using dinuclear (Cu2+- and Zn2+-based) cryptates

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical investigations have been carried out using density functional theory, with the M06L functional and SMD solvent-modeling, to study the binding interactions of geometrical cis-trans isomers of fumarate (fum2−), maleate (male2−) and 1,2-cyclopropane dicarboxylate with Cu2+- and Zn2+-based dinuclear cryptates. It was found that cis-trans isomers of these groups of compounds bind strongly to metal cryptates, and the binding ability of the cryptates is controlled by the shape of the ‘incoming’ isomer (cis or trans); trans isomers bind more strongly than cis. Due to the size and shape of the cis and trans isomers, the cryptates can bind selectively and, to a large extent, ‘recognize’ the various cis-trans isomers, suggesting the tantalising possibility of isomeric separation/purification and recognition.

Density functional theory calculations have been used to study the binding interactions of geometrical cis-trans isomers of fumarate (fum2−), maleate (male2−) and 1,2-cyclopropane dicarboxilate with Cu2+- and Zn2+-based dinuclear cryptates; Cu-based cryptate bound complexes are shown here. Cis-trans isomers bind strongly, and this is controlled by the shape of the ‘incoming’ isomer (cis or trans); trans isomers bind more strongly than cis. Binding is selective with ‘recognition’ of various cis-trans isomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lehn JM, Sauvage JP (1971) J Chem Soc Chem Commun 440–441

  2. Lehn JM (1980) Pure Appl Chem 52:2441

    CAS  Google Scholar 

  3. Lehn JM, Pine SH, Watanabe EI, Willard AC (1977) J Am Chem Soc 99:6755

    Article  Google Scholar 

  4. Motekaitis RJ, Martell AE, Lehn JM, Watanabe EI (1982) Inorg Chem 21:4253

    Article  CAS  Google Scholar 

  5. Arnaud-Neu F, Fuangswasdi S, Maubert B, Nelson J, McKee V (2000) Inorg Chem 39:573–579

    Article  CAS  Google Scholar 

  6. Amendola V, Fabbrizzi L, Mangano C, Pallavicini P, Poggi A, Taglietti A (2001) Coord Chem Rev 219:821

    Article  Google Scholar 

  7. El-Hendawy MM, English NJ, Mooney DA (2012) Inorg Chem 51:5282–5288

    Article  CAS  Google Scholar 

  8. El-Hendawy MM, English NJ, Mooney DA (2011) J Mol Model 17:3151–3162

    Article  CAS  Google Scholar 

  9. English NJ, El-Hendawy MM, Mooney DA, MacElroy JMD (2014) Coord Chem Rev 269:85–95

    Article  CAS  Google Scholar 

  10. El-Hendawy MM, Bandaru S, English NJ, Mooney DA (2013) Catal Sci Technol 3:2234

    Article  CAS  Google Scholar 

  11. Chen JM, Wei W, Feng XL, Lu TB (2007) Chem: Asian J 2:710–719

    Google Scholar 

  12. Dussart Y, Harding C, Dalgaard P, McKenzie C, Kadirvelraj R, McKee V, Nelson J (2002) J Chem Soc Dalton Trans 1704–1713

  13. Xie G, Jiang L, Lu T (2013) Dalton Trans 42:14092–14099

    Article  CAS  Google Scholar 

  14. Zhao Y, Schultz NE, Truhlar DGJ (2006) Chem Theory Comput 2:364–382

    Article  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT

  16. Nicklass A, Dolg M, Stoll H, Preuss HJ (1995) Chem Phys 102:8942–8952

    Article  CAS  Google Scholar 

  17. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Article  CAS  Google Scholar 

  18. Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon works supported by Science Foundation Ireland (SFI) under Grant No. [07/SRC/B1160]. We thank SFI and the Irish Centre for High-End Computing for the provision of high-performance computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sateesh Bandaru or Niall J. English.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandaru, S., English, N.J. & MacElroy, J.M.D. Theoretical studies of separation of cis–trans isomers using dinuclear (Cu2+- and Zn2+-based) cryptates. J Mol Model 20, 2328 (2014). https://doi.org/10.1007/s00894-014-2328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2328-z

Keywords

Navigation