Skip to main content
Log in

Small cobalt clusters encapsulated inside Si30C30 nanocages: electronic and magnetic properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We investigated the structural, electronic, and magnetic properties of small Co n clusters (n = 2–6) when they were endohedrally doped into Si30C30 nanocages using ab initio calculations based on density functional theory. Two different spin-polarized functionals based on the generalized gradient and local density approximations were used to characterize Co n @Si30C30. It was found that the Co n clusters encapsulated inside Si30C30 nanocages can form stable structures due to their significant binding energies. Among the various encapsulated clusters studied, the Co4 cluster was the most stable in a Si30C30 nanocage. We also found that the magnetic moments of the clusters decreased during the encapsulation process due to substantial hybridization between the cobalt cluster and the Si30C30 nanocage structure, although the encaged Co2 cluster presented somewhat different behavior. It was found that significant magnetic moments are induced in the wall of the nanocage, and that Co n @Si30C30 presents higher total magnetic moments than Co n @C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smally RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  2. Lou L, Nordlander P (1994) An endohedral metallocarbohedrene C@Ti8C12*. Chemical Phys Lett 224:439–444

    Article  CAS  Google Scholar 

  3. Jackson K, Nellermoe B (1996) Zr@Si20: a strongly bound Si endohedral system. Chem Phys Lett 254:249–256

    Article  CAS  Google Scholar 

  4. Chistyakov AL, Stankevich IV (2000) Endohedral analogs of ferrocene: ab initio theoretical predictions. J Org Met Chem 599:18–27

    Article  CAS  Google Scholar 

  5. Guo T, Diener MD, Chai Y, Alford MJ, Haufler RE, McClure SM, Ohno T, Weaver JH, Scuseria GE, Smalley RE (1992) Uranium stabilization of C28—a tetravalent fullerene. Science 257:1661–1664

    Google Scholar 

  6. Funasaka H, Sugiyama K, Yamamoto K, Takahashi T (1995) Synthesis of actinide carbides encapsulated within carbon nanoparticles. J Appl Phys 78:5320–5324

    Article  CAS  Google Scholar 

  7. Oku T, Suganuma K (2001) High-resolution electron microscopy and structural optimization of C36, B36N36 and Fe@B36N36 clusters. Diamond Relat Mater 10:1205–1209

    Article  CAS  Google Scholar 

  8. Oku T, Kuno M, Narita I (2002) High-resolution electron microscopy and electronic structures of endohedral La@B36N36 clusters. Diamond Relat Mater 11:940–944

    Article  CAS  Google Scholar 

  9. Bezi Javan M, Tajabor N (2012) Structural, electronic and magnetic properties of Fen@C60 and Fe n @C80 (n = 2–7) endohedral metallofullerene nano-cages: first principles study. J Magn Magn Mater 324:52–59

    Google Scholar 

  10. Bezi Javan M, Tajabor N, Rezaee-Roknabadi M, Behdani M (2011) First principles study of small cobalt clusters encapsulated in C60 and C82 spherical nanocages. Appl Surf Sci 257:7586–7591

    Article  CAS  Google Scholar 

  11. Bezi Javan M, Tajabor N, Rezaee Roknabadi M, Behdani M (2011) First principles calculations of C70 fullerene nano-cage doped with transition metal atoms (Fe, Co). Physica E 43:1351–1359

    Article  CAS  Google Scholar 

  12. Bezi Javan M, Tajabor N, Behdani M, Rezaee Rokn-Abadi M (2010) Influence of 3d transition metals (Fe, Co) on the structural, electrical and magnetic properties of C60 nano-cage. Physica B 405:4937–4942

    Article  CAS  Google Scholar 

  13. Shu CY, Gan LH, Wang CR, Pei XL, Han HB (2006) Synthesis and characterization of a new water-soluble endohedral metallofullerene for MRI contrast agents. Carbon 44:496–500

    Article  CAS  Google Scholar 

  14. Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Metallofullerene drug design. Coord Chem Rev 190:199–207

    Article  Google Scholar 

  15. Song LC, Yu GA, Hu QM, Che CM, Zhu N, Huang JS (2006) Synthesis and characterization of the first transition-metal fullerene complexes containing bis (η6-benzene) chromium moieties. J Org Met Chem 691:787–792

    Article  CAS  Google Scholar 

  16. Song LC, Liu JT, Hu QM (2002) Synthesis and characterization of group 6 transition-metal [70] fullerene derivatives containing dppb ligands.: crystal structure of fac-Mo(CO)3(dppb)(CH3CN). J Org Met Chem 662:51–58

    Google Scholar 

  17. Sakai S, Naramoto H, Avramov PV, Yaita T, Lavrentiev V, Narumi K, Baba Y, Maeda Y (2007) Comparative study of structures and electrical properties in cobalt–fullerene mixtures by systematic change of cobalt content. Thin Solid Films 515:7758–7764

    Article  CAS  Google Scholar 

  18. Eda Y, Itoh K, Ito YN, Kawato T (2009) 2,6-Bis(porphyrin)-substituted pyrazine: a new class of supramolecular synthon binding to a transition-metal ion and fullerene (C60). Tetrahedron 65:282–288

    Article  CAS  Google Scholar 

  19. Balch AL, Catalano VJ, Costa DA, Fawcett WR, Federco M, Ginwalla AS, Lee JW, Olmstead MM, Noll BC, Winkler K (1997) Transition metal fullerene chemistry: the route from structural studies of exohedral adducts to the formation of redox active films. J Phys Chem Solids 58:1633–1643

    Google Scholar 

  20. Han WQ, Redlich P, Ernst F, Rühle M (1999) Synthesizing boron nitride nanotubes filled with SiC nanowires by using carbon nanotubes as templates. Appl Phys Lett 75:1875–1878

    Article  CAS  Google Scholar 

  21. Ma RZ, Bando Y, Sato T (2001) Coaxial nanocables: Fe nanowires encapsulated in BN nanotubes with intermediate C layers. Chem Phys Lett 350:1–5

    Article  CAS  Google Scholar 

  22. Cho WJ, Kosugi R, Senzaki J, Fukuda K, Arai K, Suzuki S (2000) Study on electron trapping and interface states of various gate dielectric materials in 4H–SiC metal-oxide-semiconductor capacitors. Appl Phys Lett 77:2054–2057

    Article  CAS  Google Scholar 

  23. Zhang J, Sugioka K, Wada S, Tashiro H, Toyoda K, Midorikawa K (1998) Precise microfabrication of wide band gap semiconductors (SiC and GaN) by VUV–UV multiwavelength laser ablation. Appl Surf Sci 127:793–799

    Article  Google Scholar 

  24. Dolgaev SI, Lyalin AA, Shafeev GA, Voronov VV (1996) Fast etching and metallization of SiC ceramics with copper-vapor-laser radiation. Appl Phys A 63:75–79

    Article  Google Scholar 

  25. Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464–14471

    Google Scholar 

  26. Seeger T, Redlich P, Ruhle M (2000) Synthesis of nanometer-sized SiC whiskers in the arc-discharge. Adv Mater 12:279–282

    Google Scholar 

  27. Lu Q, Hu J, Tang K, Qian Y (1999) Growth of SiC nanorods at low temperature. Appl Phys Lett 75:507–510

    Article  CAS  Google Scholar 

  28. Pochet P, Genovese L, Caliste D, Rousseau I, Goedecker S, Deutsch T (2010) First-principles prediction of stable SiC cage structures and their synthesis pathways. Phys Rev B 82:035431–035437

    Article  CAS  Google Scholar 

  29. Bezi Javan M (2013) Optical properties of SiC nanocages: ab initio study. Appl Phys A 113:105–113

    Article  CAS  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Google Scholar 

  31. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006

    Article  CAS  Google Scholar 

  32. Ozaki T (2003) Variationally optimized atomic orbitals for large-scale electronic structures. Phys Rev B 67:155108–155113

    Article  CAS  Google Scholar 

  33. Ozaki T, Kino H (2004) Numerical atomic basis orbitals from H to Kr. Phys Rev B 69:195113–195132

    Article  CAS  Google Scholar 

  34. Ozaki T, Kino H (2005) Efficient projector expansion for the ab initio LCAO method. Phys Rev B 72:045121–045129

    Article  CAS  Google Scholar 

  35. Kant A, Strauss B (1964) Dissociation energies of diatomic molecules of the transition elements. II. Titanium, chromium, manganese, and cobalt. J Chem Phys 41:3806–3819

    Google Scholar 

  36. Datta S, Kabir M, Ganguly S, Sanyal B, Saha-Dasgupta T, Mookerjee A (2007) Structure, bonding, and magnetism of cobalt clusters from first-principles calculations. Phys Rev B 76:014429–014440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Bezi Javan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Javan, M.B. Small cobalt clusters encapsulated inside Si30C30 nanocages: electronic and magnetic properties. J Mol Model 20, 2145 (2014). https://doi.org/10.1007/s00894-014-2145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2145-4

Keywords

Navigation