Skip to main content
Log in

Exploration of various electronic properties along the reaction coordinate for hydration of Pt(II) and Ru(II) complexes; the CCSD, MPx, and DFT computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the study behavior of molecular electrostatic potential, averaged local ionization energy, and reaction electronic flux along the reaction coordinate of hydration process of three representative Ru(II) and Pt(II) complexes were explored using both post-HF and DFT quantum chemical approximations. Previously determined reaction mechanisms were explored by more detailed insight into changes of electronic properties using ωB97XD functional and MP2 method with 6–311++G(2df,2pd) basis set and CCSD/6–31(+)G(d,p) approach. The dependences of all examined properties on reaction coordinate give more detailed understanding of the hydration process.

The ALIE and MEP changes during cisplatin hydration

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lippert B (1999) Cisplatin, Wiley-VCH, Weinheim, 1999

  2. Zimmermann T, Leszczynski J, Burda JV (2011) J Mol Model 17:2385–2393

    Article  CAS  Google Scholar 

  3. Zeizinger M, Burda JV, Šponer J, Kapsa V, Leszczynski J (2001) J Phys Chem A 105:8086–8092

    Article  CAS  Google Scholar 

  4. Raber J, Zhu C, Eriksson LA (2005) J Phys Chem 109:11006–11015

    Article  CAS  Google Scholar 

  5. Robertazzi A, Platts JA (2004) J Comput Chem 25:1060–1067

    Article  CAS  Google Scholar 

  6. Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378–9387

    Article  CAS  Google Scholar 

  7. Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 26:907–914

    Article  CAS  Google Scholar 

  8. Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 120:1253–1262

    Article  CAS  Google Scholar 

  9. Schroeder G, Kozelka J, Sabat M, Fouchet M-H, Beyerle-Pfnur R, Lippert B (1996) Inorg Chem 35:1647–1652

    Article  CAS  Google Scholar 

  10. Lopes JF, Menezes VSD, Duarte HA, Rocha WR, De Almeida WB, Dos Santos HF (2006) J Phys Chem B 110:12047–12054

    Article  CAS  Google Scholar 

  11. Gossens C, Tavernelli I, Rothlisberger U (2005) Chimia 59:81–84

    Article  CAS  Google Scholar 

  12. Deubel DV, Lau JKC (2006) Chem Commun 2451–2453

  13. Wang F, Chen HM, Parsons S, Oswald LDH, Davidson JE, Sadler PJ (2003) Chem Eur J 9:5810–5820

    Article  CAS  Google Scholar 

  14. Chen JC, Chen LM, Liao SY, Zheng K, Ji LN (2007) Dalton Transact 3507–3515

  15. Chen JC, Chen LM, Liao SY, Zheng KC, Ji LN (2009) J Mol Struct -Theochem 901:137–144

    Article  CAS  Google Scholar 

  16. Chen JC, Chen LM, Liao SY, Zheng KC, Ji LN (2009) Phys Chem Chem Phys 11:3401–3410

    Article  CAS  Google Scholar 

  17. Chen JC, Chen LM, Xu LC, Zheng KC, Ji LN (2008) J Phys Chem B 112:9966–9974

    Article  CAS  Google Scholar 

  18. Gossens C, Dorcier A, Dyson PJ, Rothlisberger U (2007) Organomet 26:3969–3975

    Article  CAS  Google Scholar 

  19. Gossens C, Tavernelli I, Rothlisberger U (2009) J Phys Chem A 113:11888–11897

    Article  CAS  Google Scholar 

  20. Toro-Labbe A, Gutierrez-Oliva S, Concha MC, Murray JS, Politzer P (2004) J Chem Phys 121:4570–4576

    Article  CAS  Google Scholar 

  21. Burda JV, Toro-Labbe A, Gutierrez-Oliva S, Murray JS, Politzer PA (2007) J Phys Chem A 111:2455–2457

    Article  CAS  Google Scholar 

  22. Jaque P, Toro-Labbe A (2000) J Phys Chem A 104:995–1002

    Article  CAS  Google Scholar 

  23. Martınez J, Toro-Labbe A (2004) Chem Phys Lett 392:132–138

    Article  Google Scholar 

  24. Duarte F, Toro-Labbe A (2011) J Phys Chem 115:3050–3059

    Article  CAS  Google Scholar 

  25. Toro-Labbe A (1999) J Phys Chem A 103:4398–4401

    Article  CAS  Google Scholar 

  26. Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  27. Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1446

    Article  CAS  Google Scholar 

  28. Murray JS, Brinck T, Grice ME, Politzer P (1992) J Mol Struct - Theochem 256:29–45

    Article  Google Scholar 

  29. Chen H, Parkinson JA, Parsons S, Coxal RA, Gould RO, Sadler P (2002) J Am Chem Soc 124:3064–3082

    Article  CAS  Google Scholar 

  30. Morris RE, Aird R, Murdoch PD, Chen H, Cummings J, Hughes ND, Parson S, Parkin A, Boyd G, Sadler P, Jodrell D (2001) J Med Chem 44:3616–3621

    Article  CAS  Google Scholar 

  31. Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) Chem Commun 1396–1402

  32. Allardyce CS, Dyson PJ, Ellis DJ, Salter PA, Scopelliti R (2003) J Organomet Chem 668:35–42

    Article  CAS  Google Scholar 

  33. Chval Z, Futera Z, Burda JV (2011) J Chem Phys 134:024520

    Article  Google Scholar 

  34. Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  35. Futera Z, Klenko J, Šponer JE, Šponer J, Burda JV (2009) J Comput Chem 30:1758–1770

    Article  CAS  Google Scholar 

  36. Burda JV, Zeizinger M, Šponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232

    Article  CAS  Google Scholar 

  37. Chval Z, Sip M, Burda JV (2008) J Comput Chem 29:2370–2381

    Article  CAS  Google Scholar 

  38. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968

    Article  CAS  Google Scholar 

  39. Bradáč O, Zimmermann T, Burda JV (2013) J Mol Model doi:10.1007/s00894-012-1442-z

Download references

Acknowledgments

Authors are grateful to Grant Agency of Czech Republic (GAČR) project No P205/10/0228 for supporting this study. Also, the access to the MetaCentrum computing and storage facilities (grant LM2010005) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav V. Burda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burda, J.V., Futera, Z. & Chval, Z. Exploration of various electronic properties along the reaction coordinate for hydration of Pt(II) and Ru(II) complexes; the CCSD, MPx, and DFT computational study. J Mol Model 19, 5245–5255 (2013). https://doi.org/10.1007/s00894-013-1994-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1994-6

Keywords

Navigation