Skip to main content

Advertisement

Log in

Interactions of hydrogen molecules with complexes of lithium cation and aromatic nitrogen-containing heterocyclic anions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Highly stable salt functional groups consisting of lithium cation and aromatic anions (C n H n N5−n −Li) are studied for hydrogen storage using ab initio calculations, force field development, and grand canonical Monte Carlo simulations. Second-order Møller–Plesset perturbation theory with the resolution of identity approximation calculations are calibrated at the CCSD(T)/complete basis set (CBS) level of theory. The calibrations on different types of binding sites are different, but can be used to correct the van der Waals interactions systematically. The anion and salt functional groups provide multiple binding sites. With increased number of nitrogen atoms in the aromatic anion, the number of binding sites increases but the average binding energy decreases. Among the functional groups considered, CHN4-Li exhibits the largest number of binding sites (14) and a weak average binding energy of 5.7 kJ mol–1 with CCSD(T)/CBS correction. The calculated adsorption isotherms demonstrate that the introduction of the functional group significantly enhances hydrogen uptake despite relatively weak average binding energy. Therefore, it is concluded that searching for functional groups with the larger number of binding sites is another key factor for enhancing the hydrogen storage capacity, given that other conditions such as free volume and surface area are fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Deng WQ, Xu X, Goddard WA (2004) Phys Rev Lett 92:166103

    Article  Google Scholar 

  2. Han SS, Goddard WA (2007) J Am Chem Soc 129:8422–8423

    Article  CAS  Google Scholar 

  3. Cao DP, Lan JH, Wang WC, Smit B (2009) Angew Chem Int Ed 48:4730–4733

    Article  CAS  Google Scholar 

  4. Chen P, Wu X, Lin J, Tan KL (1999) Science 285:91–93

    Article  CAS  Google Scholar 

  5. Pinkerton FE, Wicke BG, Olk CH, Tibbetts GG, Meisner GP, Meyer MS, Herbst JF (2000) J Phys Chem B 104:9460–9467

    Article  CAS  Google Scholar 

  6. Ferre-Vilaplana A (2008) J Phys Chem C 112:3998–4004

    Article  CAS  Google Scholar 

  7. Schlapbach L, Züttel A (2001) Nature 414:353–358

    Article  CAS  Google Scholar 

  8. Frost H, Snurr RQ (2007) J Phys Chem C 111:18794–18803

    Article  CAS  Google Scholar 

  9. U.S. Department of Energy. Energy Efficiency and Renewable Energy. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf

  10. Barbatti M, Jalbert G, Nascimento MAC (2001) J Chem Phys 114:2213–2218

    Article  CAS  Google Scholar 

  11. Mulfort KL, Hupp JT (2007) J Am Chem Soc 129:9604–9605

    Article  CAS  Google Scholar 

  12. Yang SH, Lin X, Blake AJ, Walker GS, Hubberstey P, Champness NR, Schröder M (2009) Nat Chem 1:487–493

    Article  CAS  Google Scholar 

  13. Himsl D, Wallacher D, Hartmann M (2009) Angew Chem Int Ed 48:4639–4642

    Article  CAS  Google Scholar 

  14. Li A, Lu RF, Wang Y, Wang X, Han KL, Deng WQ (2010) Angew Chem Int Ed 49:3330–3333

    Article  CAS  Google Scholar 

  15. Mavrandonakis A, Klopper W (2008) J Phys Chem C 112:11580–11585

    Article  CAS  Google Scholar 

  16. Sun YX, Ben T, Wang L, Qiu SL, Sun H (2010) J Phys Chem Lett 1:2753–2756

    Article  CAS  Google Scholar 

  17. Weigend F, Häser M (1997) Theor Chem Acc 97:331–340

    Article  CAS  Google Scholar 

  18. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  19. Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252

    Article  CAS  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  21. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  22. Darkrim F, Aoufi A, Malbrunot P, Levesque D (2000) J Chem Phys 112:5991

    Article  CAS  Google Scholar 

  23. Landau D, Binder K (2000) A guide to Monte Carlo simulations in statistical physics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  24. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR Jr, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc, Wallingford

    Google Scholar 

  26. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  27. Martin MG (2006) MCCCS Towhee, http://towhee.sourceforge.net/

  28. Hübner O, Glöss A, Fichtner M, Klopper W (2004) J Phys Chem A 108:3019–3023

    Article  Google Scholar 

  29. Chandrakumar KRS, Ghosh SK (2007) Chem Phys Lett 447:208–214

    Article  CAS  Google Scholar 

  30. Vitillo JG, Damin A, Zecchina A, Ricchiardi G (2005) J Chem Phys 122:114311

    Article  Google Scholar 

  31. Vitillo JG, Damin A, Zecchina A, Ricchiardi G (2006) J Chem Phys 124:224308

    Article  Google Scholar 

  32. Garberoglio G, Skoulidas AI, Johnson JK (2005) J Phys Chem B 109:13094–13103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation of China (nos. 21203118, 21073119 and 21173146), the Scientific Research Foundation of Shanghai Institute of Technology (grant YJ2012-11), and by the National Basic Research Program of China (no. 2007CB209701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingxin Sun or Huai Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

The hydrogen binding energies of H2 molecules with C n H n N5−n and C n H n N5−n Li [n = 1−5], binding energies test of one H2 with CHN4 anion by introducing diffuse function, the modified force field by fitting ab initio data, the optimized structures of C n H n N5−n -H2 and C n H n N5−n −Li−H2 with the maximum number of H2, the optimized structures of in-plane (I) CHN4-Li-mH2 [m = 1−14], and the interaction energy curves between H2 and Li-CHN4 using the modified force field are provided (DOC 1474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Sun, H. Interactions of hydrogen molecules with complexes of lithium cation and aromatic nitrogen-containing heterocyclic anions. J Mol Model 19, 1641–1650 (2013). https://doi.org/10.1007/s00894-012-1738-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1738-z

Keywords

Navigation