Skip to main content
Log in

Silicon–doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

By carrying out density functional theory (DFT) calculations, we have studied the effects of silicon (Si)-doping on the geometrical and electronic properties, as well as the chemical reactivity of carbon nanotubes (CNTs). It is found that the formation energies of these nanotubes increase with increasing tube diameters, indicating that the embedding of Si into narrower CNTs is more energetically favorable. For the given diameters, Si-doping in a (n, 0) CNT is slightly easier than that of in (n, n) CNT. Moreover, the doped CNTs with two Si atoms are easier to obtain than those with one Si atom. Due to the introduction of impurity states after Si-doping, the electronic properties of CNTs have been changed in different ways: upon Si-doping into zigzag CNTs, the band gap of nanotube is decreased, while the opening of band gap in armchair CNTs is found. To evaluate the chemical reactivity of Si-doped CNTs, the adsorption of NH3 and H2O on this kind of material is explored. The results show that N–H bond of NH3 and O–H bond of H2O can be easily split on the surface of doped CNTs. Of particular interest, the novel reactivity makes it feasible to use Si-doped CNT as a new type of splitter for NH3 and H2O bond, which is very important in chemical and biological processes. Future experimental studies are greatly desired to probe such interesting processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Treacy MJ, Ebessen TW, Gibson JM (1996) Nature 381:678–680

    Article  CAS  Google Scholar 

  2. Tans SJ, Devoret MH, Dai H, Tess A, Smalley RE, Gerligs LJ, Dekker C (1997) Nature 386:474–477

    Article  CAS  Google Scholar 

  3. Tans SJ, Verschueren ARM, Dekker C (1998) Nature 393:49–52

    Article  CAS  Google Scholar 

  4. Terrones M, Souza Filho AG, Rao AM (2008) Doped carbon nanotubes: synthesis, characterization and applications. In: Jorio A, Dresselhaus MS, Dresselhaus G, (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin, 531:566

  5. Gai PL, Stephan O, McGuire K, Rao AM, Dresselhaus MS, Dresselhaus G, Colliex C (2004) J Mater Chem 14:669–675

    Article  CAS  Google Scholar 

  6. Villap OF, Zamudio A, Elias AL, Son H, Barros EB, Chow SG, Kim YA, Muramatsu H, Hayashi T, Kong J, Terrones H, Dresselhaus G, Endo M, Terrones M, Dresselhaus MS (2006) Chem Phys Lett 424:345–352

    Article  Google Scholar 

  7. McGuire K, Gothard N, Gai PL, Dresselhaus MS, Sumanasekera G, Rao AM (2005) Carbon 43:219–227

    Article  CAS  Google Scholar 

  8. Sumpter BG, Meunier V, Romo-Herrera JM, Cruz-Silva E, Cullen DA, Terrones H, Smith DJ, Terrones M (2007) ACS Nano 1:369–375

    Article  CAS  Google Scholar 

  9. Ayala P, Rubio A, Pichler T (2010) Rev Mod Phys 82:1843–1885

    Article  CAS  Google Scholar 

  10. Terrones M, Jorio A, Endo M, Rao AM, Kim YA, Hayashi T, Terrones H, Charlier JC, Dresselhaus G, Dresselhaus MS (2004) Mater Today 7:30–45

    Article  CAS  Google Scholar 

  11. Yu SS, Wen QB, Zheng WT, Jiang Q (2007) Nanotechnology 18:165702

    Article  Google Scholar 

  12. Bai L, Zhou Z (2007) Carbon 45:2105–2110

    Article  CAS  Google Scholar 

  13. Li Y, Zhou Z, Shen P, Chen Z (2009) ACS Nano 3:1952–1958

    Article  CAS  Google Scholar 

  14. Wang RX, Zhang DJ, Zhang YM, Liu CB (2006) J Phys Chem B 110:18267–18271

    Article  CAS  Google Scholar 

  15. Korestune T, Saito S (2008) Phys Rev B 77:165417

    Article  Google Scholar 

  16. Shan B, Cho K (2010) Chem Phys Lett 492:131–136

    Article  CAS  Google Scholar 

  17. Zhang ZY, Cho K (2007) Phys Rev B 75:075420

    Article  Google Scholar 

  18. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760–764

    Article  CAS  Google Scholar 

  19. Qu L, Liu Y, Baek JB, Dai L (2010) ACS Nano 4:1321–1326

    Article  CAS  Google Scholar 

  20. Baierle RJ, Fagan SB, Mota R, da Silva AJR, Fazzio A (2001) Phys Rev B 64:085413

    Article  Google Scholar 

  21. Avramov PV, Sorokin PB, Fedorov AS, Fedorov DG, Maeda Y (2006) Phys Rev B 74:245417

    Article  Google Scholar 

  22. Galano A, Orgaz E (2008) Phys Rev B 77:045111

    Article  Google Scholar 

  23. Guo GL, Wang F, Sun H, Zhang DJ (2008) Inter J Quant Chem 108:203–209

    Article  CAS  Google Scholar 

  24. Jiang HH, Zhang DJ, Wang RX (2009) Nanotechnology 20:145501

    Article  Google Scholar 

  25. Campos-Delgado J, Maciel IO, Cullen DA, Smith DJ, Jorio A, Pimenta MA, Terrones H, Terrones M (2010) ACS Nano 4:1696–1702

    Article  CAS  Google Scholar 

  26. Fagan SB, Mota R, Baierle RJ, da Silva AJR, Fazzio A (2003) Mater Charact 50:183–187

    Article  CAS  Google Scholar 

  27. Fagan SB, Mota R, da Silva AJR, Fazzio A (2004) Nano Lett 4:975–977

    Article  CAS  Google Scholar 

  28. Zanella, Fagan SB, Mota R, Fazzio A (2007) Chem Phys Lett 439:348–353

    Article  CAS  Google Scholar 

  29. Song C, Xia YY, Zhao MW, Liu XD, Li F, Huang BD, Zhang HY, Zhang BY (2006) Phys Lett A 358:166–170

    Article  CAS  Google Scholar 

  30. Wang YW, Chen SG, Li L, Yin YS (2009) Multi-Funct Mater Struct 79:613

    Google Scholar 

  31. Mavrandonakis A, Froudakis GE (2003) Nano Lett 3:1481–1484

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  33. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  34. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  35. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  36. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  37. Olsen RA, Kroes GJ, Henkelman G, Arnaldsson A, Jonsson H (2004) J Chem Phys 121:9776–9792

    Article  CAS  Google Scholar 

  38. Maciel IO, Campos-Delgado J, Cruz-Silva E, Pimenta MA, Sumpter BG, Meunier V, López-Urías F, Muñoz S, Oval E, Terrones H, Terrones M, Jorio A (2009) Nano Lett 9:2267–2272

    Article  CAS  Google Scholar 

  39. Xu Z, Lu W, Wang W, Gu C, Liu K, Bai X, Wang E, Dai H (2008) Adv Mater 20:3615–3619

    Article  CAS  Google Scholar 

  40. Li YT, Chen TC (2009) Nanotechnology 20:375705

    Article  Google Scholar 

  41. Dean JA (1992) Lange’s Chemistry H, book, 15th edn. McGraw-Hill, New York

    Google Scholar 

  42. Nakajima Y, Kameo H, Uzuki HS (2006) Angew Chem Int Ed 45:950–952

    Article  CAS  Google Scholar 

  43. Dagani R (2007) Chem Eng News 85:67

    Google Scholar 

  44. Blum O, Milstein D (2002) J Am Chem Soc 124:11456–11467

    Article  CAS  Google Scholar 

  45. Zhao J, Goldman JS, Hartwig JF (2005) Science 307:1080–1082

    Article  CAS  Google Scholar 

  46. Lavallo V, Frey GD, Schoeller W, Bert G (2008) Angew Chem Int Ed 47:5224–5231

    Article  CAS  Google Scholar 

  47. Ochi N, Nakao Y, Sato H, Sakaki S (2007) J Am Chem Soc 129:8615–8624

    Article  CAS  Google Scholar 

  48. Frey GD, Lavallo V, Donnadieu B, Schoeller W, Bert G (2007) Science 316:439–441

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this research by the Key Program Projects of the National Natural Science Foundation of China (No 21031001, 20971040, 21001042, 21203048), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No 708029), Specialized Research Fund for the Doctoral Program of Higher Education of China (20112301110002), the University Key Teacher Foundation of Heilongjiang Provincial Education Department (NO: 1252G030), the China Postdoctoral Science Foundation (20110491119), and Heilongjiang Postdoctoral Science Foundation (LBH-Z10049). The authors would like to show great gratitude to the reviewers for raising invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingxiang Zhao or Honggang Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The optimized structures of the (a) initial state (denoted as IS), (b)~(d) transition states (denoted as TS1, TS2, and TS3), (e)~(g) final states (denoted as FS1, FS2 and FS3) of the N-H bond cleavage of NH3 on doped (10, 0) CNT with two Si atoms. The bond distances are in angstroms (DOC 692 kb)

Fig. S2

Calculated MEP for the N–H cleavage process on doped (10, 0) CNT with two Si atoms. The structures of IM, TS1, TS2, TS3, FS1, FS2, and FS3 are listed in Fig. S1 (DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bian, R., Zhao, J. & Fu, H. Silicon–doping in carbon nanotubes: formation energies, electronic structures, and chemical reactivity. J Mol Model 19, 1667–1675 (2013). https://doi.org/10.1007/s00894-012-1733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1733-4

Keywords

Navigation