Skip to main content
Log in

Theoretical studies on the unimolecular decomposition of nitroglycerin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

To improve the understanding of the unimolecular decomposition mechanism of nitroglycerin (NG) in the gas phase, density functional theory calculations were performed to determine various decomposition channels at the B3LYP/6-311G** level. For the unimolecular decomposition mechanism of NG, we find two main mechanisms: (I) homolytic cleavage of O-NO2 to form •NO2 and CH2ONO2CHONO2CH2O•, which subsequently decomposes to form •CHO, •NO2, and 2CH2O; (II) successive HONO eliminations to form HONO and CHO-CO-CHO, which subsequently decomposes to form CH2O + 2CO2 and •CHO + CO. We also find that the former channel has slightly smaller activation energy than the latter one. In addition, the rate constants of the initial process of the two decomposition channels were calculated. The results show that the O-NO2 cleavage pathway occurs more easily than the HONO elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sadasivan N, Bhaumik A (1984) J Therm Anal 29:1043–1052

    Article  CAS  Google Scholar 

  2. Li SN, Liu Y, Tuo XL, Wang XG (2008) Polymer 49:2775–2780

    Article  CAS  Google Scholar 

  3. McDonald BA (2011) Propell Explos Pyrot 36:576–583

    Article  CAS  Google Scholar 

  4. Yi JH, Zhao FQ, Xu SY, Gao HX, Hu RZ (2008) Chem Res Chinese U 24:608–614

    Article  CAS  Google Scholar 

  5. Sui X, Wang NF, Wan QA, Bi SH (2010) Propell Explos Pyrot 35:535–539

    Article  CAS  Google Scholar 

  6. Zhao YJ, Zhang W, Zhang XG, Zhu H, Wang CH, Fang LJ (2007) Theory Pract Energ Mater 7:163–166

    Google Scholar 

  7. Zhang TH (2002) J Energ Mater 20:175–189

    Article  CAS  Google Scholar 

  8. Hiegel GA, Nguyen J, Zhou Y (2004) Synth Commun 34:2507–2511

    Article  CAS  Google Scholar 

  9. Chas EW, Krastins G (1970) J Phys Chem 74:999–1006

    Article  Google Scholar 

  10. Roos BD, Brill TB (2002) Combust Flame 128:181–190

    Article  CAS  Google Scholar 

  11. Hiyoshi RI, Brill TB (2002) Propell Explos Pyrot 27:23–30

    Article  CAS  Google Scholar 

  12. Chin A, Ellison DS, Poehlein SK (2007) Propell Explos Pyrot 32:117–126

    Article  CAS  Google Scholar 

  13. Roos BD, Brill TB (2001) Propell Explos Pyrot 26:213–220

    Article  CAS  Google Scholar 

  14. Tompa AS (1980) J Hazard Mater 4:95–112

    Article  CAS  Google Scholar 

  15. Sućeska M, Mušanić SM, Houra IF (2010) Thermochim Acta 510:9–16

    Article  Google Scholar 

  16. Toland A, Simmie JM (2003) Combust Flame 132:556–564

    Article  CAS  Google Scholar 

  17. Devyatykh GG, Zaslonko IS, Smirnov VN, Moiseev AN, Votintsev VN, Tereza AM (1993) Kinet Catal 34:185–189

    Google Scholar 

  18. Oxley JC, Smith JL, Rogers E, Ye W, Aradi AA, Henly TJ (2000) Energ Fuel 14:1252–1264

    Article  CAS  Google Scholar 

  19. Correra TC, Riveros JM (2010) J Phys Chem A 114:11910–11919

    Article  CAS  Google Scholar 

  20. Makashir PS, Mahajan RR, Agrawal JP (1995) J Therm Anal 45:501–509

    Article  CAS  Google Scholar 

  21. Michael AH, Kay RB, Jimmie CO (1991) J Phys Chem 95:3955–3960

    Google Scholar 

  22. Francisco MA, Krylowski J (2005) Ind Eng Chem Res 44:5439–5446

    Article  CAS  Google Scholar 

  23. Gong XD, Xiao HM (2000) J Mol Struc (Theochem) 498:181–190

    Article  CAS  Google Scholar 

  24. Gong XD, Xiao HM (2001) J Mol Struc (Theochem) 572:213–221

    Article  CAS  Google Scholar 

  25. Wang DX, Xiao HM (1992) J Phys Org Chem 5:361–366

    Article  CAS  Google Scholar 

  26. Tan JZ, Xiao HM, Gong XD, Li JS (2001) Chinese J Chem 19:931–937

    Article  CAS  Google Scholar 

  27. Li MM, Wang GX, Guo XD, Wu ZW, Song HC (2009) J Mol Struc (Theochem) 900:90–95

    Article  CAS  Google Scholar 

  28. Yonei T, Hashimoto K, Arai M, Tamura M (2003) Energ Fuel 17:725–730

    Article  CAS  Google Scholar 

  29. Xiao HM, Fan JF, Li YF (1990) Chinese J Chem 8:390–395

    Article  Google Scholar 

  30. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  33. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., Pittsburgh, PA

    Google Scholar 

  35. Luo YR (2003) Handbook of bond dissociation energies in organic compouds. CRC Press, Washington, DC

    Google Scholar 

  36. Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2001) J Phys Chem A 105:1302–1314

    Article  CAS  Google Scholar 

  37. Chakraborty D, Muller RP, Dasgupta S, Goddard WA (2000) J Phys Chem A 104:2261–2272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National “973” Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Q., Zhu, W., Pang, A. et al. Theoretical studies on the unimolecular decomposition of nitroglycerin. J Mol Model 19, 1617–1626 (2013). https://doi.org/10.1007/s00894-012-1724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1724-5

Keywords

Navigation