Skip to main content
Log in

Theoretical study and rate constant calculations for the reactions of SiHX3 with CF3 and CH3 radicals (X = F, Cl)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Theoretical investigations were carried out on the multi-channel reactions CF3 + SiHF3, CF3 + SiHCl3, CH3 + SiHF3, and CH3 + SiHCl3. Electronic structures were calculated at the MP2/6-311+G(d,p) level, and energetic information further refined by the MC-QCISD (single-point) method. The rate constants for major reaction channels were calculated by the canonical variational transition state theory with small-curvature tunneling correction over the temperature range of 200–1,500 K. The theoretical rate constants were in good agreement with the available experimental data and were fitted to the three parameter expression: k 1a(T) = 2.93 × 10−26 T 4.25 exp (−318.68/T), and k 2a(T) = 3.67 × 10−22 T 2.72 exp (−1,414.22/T), k 3a (T) = 7.00 × 10−24 T 3.27 exp (−384.04/T), k 4a(T) = 6.35 × 10−22 T 2.59 exp (−603.18/T) (in unit of cm3molecule−1s−1) are given. Our calculations indicate that hydrogen abstraction channel is the major channel due to the smaller barrier height among four channels considered.

Theoretical investigations on the reaction mechanisms of SiHX3 with CF3 and CH3 radicals. Rate constants were calculated in the temperature range 200―1,500 K. Our calculations indicate that hydrogen abstraction is the major channel, and is important in a wide variety of materials synthesis processes, in glow discharge deposition of amorphous silicon films, and in the semiconductor manufacturing process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fester GW, Eckstein J, Gerlach D, Wagler J, Brendler E, Kroke E (2010) Inorg Chem 49:2667–2673

    Article  CAS  Google Scholar 

  2. Giraldo OH, Willis WS, Márquez M, Suib SL, Hayashi Y, Matsumoto H (1998) Chem Mater 10:366–371

    Article  CAS  Google Scholar 

  3. Valente G, Cavallotti C, Masi M, Carrà S (2001) J Cryst Growth 230:247–257

    Article  CAS  Google Scholar 

  4. Reznik B, Gerthsen D, Zhang WG, Hüttinger KJ (2003) J Eur Ceram Soc 23:1499–1508

    Article  CAS  Google Scholar 

  5. Yang Y, Zhang WG (2009) Chin J Chem Eng 17:419–426

    Article  CAS  Google Scholar 

  6. Zhang P, Wang WW, Cheng GH, Li JL (2011) Chin J Chem Eng 19:1–9

    Article  Google Scholar 

  7. Schlegel HB (1984) J Phys Chem 88:6254–6258

    Article  CAS  Google Scholar 

  8. Zhang WG, Hüttinger KJ (2001) Chem Vap Depos 7:173–181

    Article  CAS  Google Scholar 

  9. Lee JY, Lee WH, Park YK, Kim HY, Kang NY, Yoon KB, Choi WC, Yang OB (2012) Sol Energy Mater Sol Cells 105:142–147

    Article  CAS  Google Scholar 

  10. Koinuma H, Manako T, Natsuaki H, Fujioka H, Fueki K (1985) J Non-Cryst Solids 77:801–804

    Article  Google Scholar 

  11. Matsuda A, Yagii K, Kaga T, Tanaka K (1984) Jpn J Appl Phys 23:L576–L578

    Article  Google Scholar 

  12. Robertson R, Hils D, Gallagher A (1984) Chem Phys Lett 103:397–404

    Article  CAS  Google Scholar 

  13. Longeway PA, Estes RD, Weakliem HA (1984) J Phys Chem 88:73–77

    Article  CAS  Google Scholar 

  14. Kerr JA, Slater DH, Young JC (1967) J Chem Soc A 134–137

  15. Arthur NL, Bell TN (1978) Rev Chem Intermed 2:37–74

    Article  CAS  Google Scholar 

  16. Kerr JA, Stephens A, Young JC (1969) Int J Chem Kinet 1:371–380

    Article  CAS  Google Scholar 

  17. Arthur NL, Christie JR, Mitchell GD (1979) Aust J Chem 32:1017–1023

    Article  CAS  Google Scholar 

  18. Bell TN, Johnson BB (1967) Aust J Chem 20:1545–1551

    Article  CAS  Google Scholar 

  19. Kerr JA, Slater DH, Young JC (1966) J Chem Soc A 104–108

  20. Bell RL, Truong TN (1994) J Chem Phys 101:10442–10451

    Article  CAS  Google Scholar 

  21. Truong TN, Duncan WT, Bell RL (1996) Chemical applications of density functional theory. American Chemical Society, Washington, DC, p 85

    Book  Google Scholar 

  22. Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry:current approaches and perspectives. Kluwer, Dordrecht

    Google Scholar 

  23. Corchado JC, Espinosa-Garcia J, Hu W-P, Rossi I, Truhlar DG (1995) J Phys Chem 99:687–694

    Article  CAS  Google Scholar 

  24. Hu W-P, Truhlar DG (1996) J Am Chem Soc 118:860–869

    Article  CAS  Google Scholar 

  25. Fast PL, Truhlar DG (2000) J Phys Chem A 104:6111–6116

    Article  CAS  Google Scholar 

  26. Corchado JC, Chuang Y-Y, Fast PL, Hu W-P, Liu Y-P, Lynch GC, Nguyen KA, Jackels CF, Fernandez-Ramos A, Ellingson BA, Lynch BJ, Zheng JJ, Melissasa VS, Villa J, Rossi I, Coitino EL, Pu JZ, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2007) POLYRATE version 9.7. Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis

    Google Scholar 

  27. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440–448

    Article  CAS  Google Scholar 

  28. Truhlar DG, Isaacson AD, Garrett BC (1985) Generalized transtion state theory. In: Baer M (ed) The theory of chemical reaction dynamics, 4th edn. CRC, Boca Raton, p 65

    Google Scholar 

  29. Duncan WT, Truong TN (1995) J Chem Phys 103:9642–9652

    Article  CAS  Google Scholar 

  30. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  31. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  32. Boris B, Petia B (1999) J Phys Chem A 103:6793–6799

    Article  Google Scholar 

  33. Bergman DL, Laaksonen L, Laaksonen A (1997) J Mol Graph Model 15:301–306

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Revision A.02, Wallingford CT

  35. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593–1598

    Article  CAS  Google Scholar 

  36. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534–4548

    Article  CAS  Google Scholar 

  37. Garrett BC, Truhlar DG, Grev RS, Magnuson AW (1980) J Phys Chem 84:1730–1748

    Article  CAS  Google Scholar 

  38. Lu DH, Truong TN, Melissas VS, Lynch GC, Liu Y-P, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235–262

    Article  CAS  Google Scholar 

  39. Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415

    Article  CAS  Google Scholar 

  40. Truhlar DG (1991) J Comput Chem 12:266–270

    Article  CAS  Google Scholar 

  41. Chuang YY, Truhlar DG (2000) J Chem Phys 112:1221–1228

    Article  CAS  Google Scholar 

  42. Kuchitsu K (1998) Structure of free polyatomic molecules basic data. Springer, Berlin, pp 84, 87, 102, 104, 105, 111

  43. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  44. Jacox ME (2005) In: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June, Release

  45. Shimanouchi T (2005) In: NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June, Release

  46. Chase MW (1998) NIST-JANAF Themochemical Tables, 4th ed., J Phys Chem Ref Data, Monograph 9, ACS: Washington, DC 1–1951

  47. Afeefy HY, Liebman JF, Stein SE (2005) In: NIST ChemistryWebBook, NIST Standard Reference Database Number 69, June, R

  48. Ho P, Melius CF (1990) J Phys Chem 94:5120–5127

    Article  CAS  Google Scholar 

  49. Manion JA (2002) J Phys Chem Ref Data 123–172

  50. Doncaster AM, Walsh R (1978) Int J Chem Kinet 10:101–110

    Article  CAS  Google Scholar 

  51. Wu YD, Wong CL (1995) J Org Chem 60:821–828

    Article  CAS  Google Scholar 

  52. Walsh R (1989) In: Patai S, Rapport Z (eds) Thermochemistry. In: The chemistry of organo silicon compounds, Part 1, vol Chapter 5. Wiley, New York, pp 371–391

    Chapter  Google Scholar 

  53. Hildenbrand DL, Lau KH, Sanjurjo A (2003) J Phys Chem A 107:5448–5451

    Article  CAS  Google Scholar 

  54. Becerra R, Walsh R (1998) Thermochemistry. In: Rapport Z, Apeloig Y (eds) The chemistry of organic silicon compounds Vol 2, vol Chapter 4. Wiley, New York, pp 153–180

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Donald G. Truhlar for providing the POLYRATE 9.7 program. This work was supported by the National Natural Science Foundation of China (20973077 and 20973049), the Program for New Century Excellent Talents in University (NCET), the Doctoral Fund of Ministry of Education of China (20112303110005), the Foundation for the Department of Education of Heilongjiang Province (1152G010, 11551077), the Key Subject of Science and Technology by the Ministry of Education of China, the SF for leading experts in academe of Harbin of China (2011RFJGS026), the Science Foundation for Distinguished Young Scholar of Heilongjiang Province (JC201206).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhang or Ze-Sheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Liu, P., Liu, JY. et al. Theoretical study and rate constant calculations for the reactions of SiHX3 with CF3 and CH3 radicals (X = F, Cl). J Mol Model 19, 1515–1525 (2013). https://doi.org/10.1007/s00894-012-1704-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1704-9

Keywords

Navigation