Skip to main content
Log in

Electronic structure and stabilities of Ni-doped germanium nanoclusters: a density functional modeling study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present study reports the geometry, electronic structure, growth behavior and stability of neutral and ionized nickel encapsulated germanium clusters containing 1–20 germanium atoms within the framework of a linear combination of atomic orbital density functional theory (DFT) under a spin polarized generalized gradient approximation. In the growth pattern, Ni-capped Gen and Ni-encapsulated Gen clusters appear mostly as theoretical ground state at a particular size. To explain the relative stability of the ground state clusters, variation of different parameters, such as average binding energy per atom (BE), embedding energy (EE) and fragmentation energy (FE) of the clusters, were studied together with the size of the cluster. To explain the chemical stability of the clusters, different parameters, e.g., energy gap between the highest occupied and lowest unoccupied molecular orbitals (HOMO–LUMO gap), ionization energy (IP), electron affinity (EA), chemical potential (μ), chemical hardness (η), and polarizability etc. were calculated and are discussed. Finally, natural bond orbital (NBO) analysis was applied to understand the electron counting rule applied in the most stable Ge10Ni cluster. The importance of the calculated results in the design of Ge-based superatoms is discussed.

Different valence orbitals of 20-electron ground state clusters

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ho KM, Shvartsberg AA, Pan B, Lu ZY, Wang CZ, Wacker JG, Fye JL, Jarrod MF (1998) Nature 392:582

    Article  CAS  Google Scholar 

  2. Lokibe K, Tachikawa H, Azumi K (2007) J Phys B Atomic Mol Opt Phys 40:427

    Article  Google Scholar 

  3. Shvartsberg AA, Jarrod MF (1999) Phys Rev A 60:1235

    Article  Google Scholar 

  4. Jarrold MF, Constant VA (1991) Phys Rev Lett 67:2994

    Article  CAS  Google Scholar 

  5. Benedict LX, Puzer A, Willimson AJ, Grossman JC, Galli G, Klepeis JE, Raty JY, Pankratov O (2003) Phys Rev B 68:85310

    Article  Google Scholar 

  6. Brown WL, Freeman RR, Raghavachari K, Schluter M (1987) Science 235:860

    Article  CAS  Google Scholar 

  7. Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733

    Article  CAS  Google Scholar 

  8. Hayashi S, Kanzaya Y, Kataoka M, Nagarede T, Yamamoto K (1993) Z Phys D Atom Mol Clusters 26:144

    Article  CAS  Google Scholar 

  9. Rothlisberger U, Andreoni W, Parrinello M (1994) Phys Rev Lett 72:665

    Article  Google Scholar 

  10. Kaxiras E, Jackson K (1993) Phys Rev Lett 71:727

    Article  CAS  Google Scholar 

  11. Gopakumar G, Lievens P, Nguyen MT (2006) J Chem Phys 124:214312

    Article  CAS  Google Scholar 

  12. Li S, Van Zee RJ, Weltner W Jr, Raghavachari K (1995) Chem Phys Lett 243:275

    Article  CAS  Google Scholar 

  13. Rata I, Shvartsburg AA, Horoi M, Frauenheim T, Michael Siu KM, Jackson KA (2000) Phys Rev Lett 85:546

    Article  CAS  Google Scholar 

  14. Jarrold MF, Bower JE (1992) J Chem Phys 96:9180

    Article  CAS  Google Scholar 

  15. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503

    Article  CAS  Google Scholar 

  16. Kumar V, Kawazoe Y (2002) Phys Rev Lett 88:235504

    Article  Google Scholar 

  17. Beck SM (1987) J Chem Phys 87:4233

    Article  CAS  Google Scholar 

  18. Beck SM (1989) J Chem Phys 90:6306

    Article  CAS  Google Scholar 

  19. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) J Phys Chem A 106:3702

    Article  CAS  Google Scholar 

  20. Bandyopadhyay D, Sen P (2010) J Phys Chem A 114:1835

    Article  CAS  Google Scholar 

  21. Bandyopadhyay D (2008) J Appl Phys 104:084308

    Article  Google Scholar 

  22. Bandyopadhyay D (2009) Mol Simul 35:381

    Article  CAS  Google Scholar 

  23. Bandyopadhyay D (2012) J Mol Model 18:737

    Article  CAS  Google Scholar 

  24. Bandyopadhyay D (2009) Eur Phys J D 54:643

    Article  CAS  Google Scholar 

  25. Bandyopadhyay D, Kumar M (2008) Chem Phys 353:170

    Article  CAS  Google Scholar 

  26. Kumar M, Bhattacharrya N, Bandyopadhyay D (2012) J Mol Model 18:405

    Article  CAS  Google Scholar 

  27. Bandyopadhyay D, Kaur P, Sen P (2010) J Phys Chem A 114:12986

    Article  CAS  Google Scholar 

  28. Bandyopadhyay D (2012) J Mol Model 18:3887

    Article  CAS  Google Scholar 

  29. Koyasu K, Akutsu M, Mitsui M, Nakajima A (2005) J Am Chem Soc 127:4998

    Article  CAS  Google Scholar 

  30. Kawamura H, Kumar V, Kawazoe Y (2005) Phys Rev B 71:075423

    Article  Google Scholar 

  31. Yang JC, Lin L, Zhang Y, Jalbout AF (2008) Theor Chem Account 121:83

    Article  CAS  Google Scholar 

  32. Marchal R, Carbonniere P, Pouchan C (2010) Int J Quantum Chem 110:2256

    Article  CAS  Google Scholar 

  33. Karamanis P, Marchal R, Carbonniere P, Pouchan C (2011) J Chem Phys 135:044511

    Article  Google Scholar 

  34. Zhang X, Li G, Gao Z (2001) Rapid Commun Mass Spectrum 15:1573

    Article  CAS  Google Scholar 

  35. Wang J, Han JG (2006) J Chem Phys B 110:7820

    Article  CAS  Google Scholar 

  36. Han JG, Ren YZ, Zhang YW (2004) Chem Phys 305:253

    Article  CAS  Google Scholar 

  37. Deutsch PW, Curtiss LA, Blaudeau JP (1997) Chem Phys Lett 270:413

    Article  CAS  Google Scholar 

  38. Li BX, Cao PL (2000) Phys Rev B 62:15788

    Article  CAS  Google Scholar 

  39. Wang JL, Yang M, Wang GH, Zhao JJ (2003) Chem Phys Lett 367:448

    Article  CAS  Google Scholar 

  40. Bandyopadhyay D (2009) Nanotechnology 20:275202

    Article  Google Scholar 

  41. Reveles JU, Clayborne PA, Reber AC, Khanna SK, Pradhan K, Sen P, Pederson MP (2009) Nat Chem 1:310

    Article  CAS  Google Scholar 

  42. Aguado A (2012) J Phys Chem C 116(12):6841

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R Mennucci, B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu B, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2004) Gaussian 03, revision E01 Gaussian, Wallingford

  45. Hay PJ, Wadt WR (1985) J Chem Phys 82:270

    Article  CAS  Google Scholar 

  46. Hay PJ, Wadt WR (1985) J Chem Phys 82:284

    Article  Google Scholar 

  47. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  48. Islam MS, Ray AK (1988) Chem Phys Lett 153:496

    Article  CAS  Google Scholar 

  49. Northrup E, Cohen ML (1983) Chem Phys Lett 102:440

    Article  CAS  Google Scholar 

  50. Pacchioni G (1984) Chem Phys Lett 107:70

    Article  CAS  Google Scholar 

  51. Pacchioni G, Koutecky J (1986) J Chem Phys 84:3301

    Article  CAS  Google Scholar 

  52. Dai D, Balasubramanian K (1992) J Chem Phys 96:8345

    Article  CAS  Google Scholar 

  53. Deutsch PW, Curtiss LA, Blaudeau JP (1997) Chem Phys Lett 270:413

    Article  CAS  Google Scholar 

  54. Abtew TA, Drabold DA (2007) Phys Rev B 75:045201

    Article  Google Scholar 

  55. Nagendran S, Sen SS, Roesky HW, Koley D, Grubmüller H, Pal A, Herbst-Irmer R (2008) Organometallics 27:5459

    Article  CAS  Google Scholar 

  56. Bell NA, Glockling F, Schneider ML, Shearer HMM, Wilbey MD (1984) Acta Crystallogr C40:625

    CAS  Google Scholar 

  57. Shim I, Kingcade JE, Gingerich KA (1988) J Chem Phys 89:3104

    Article  CAS  Google Scholar 

  58. Reddy BV, Nayak SK, Khanna SN, Rao BK, Jena P (1998) J Phys Chem A 102:1748

    Article  CAS  Google Scholar 

  59. Ho J, Polak ML, Ervin KM, Lineberger WC (1993) J Chem Phys 99:8542

    Article  CAS  Google Scholar 

  60. Grigoryan VG, Springborg M (2001) Phys Chem Chem Phys 3:5135

    Article  CAS  Google Scholar 

  61. Noell JO, Newton MD, Hay PJ, Martin RL, Bobrowicz FW (1980) J Chem Phys 73:2360

    Article  CAS  Google Scholar 

  62. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  63. Tai TB, Nguyes MT (2011) J Chem Theory Comput 7:1119

    Article  CAS  Google Scholar 

  64. Calvo F (2009) Comput Mater Sci 40:8

    Article  Google Scholar 

  65. Marchal R, Carbonniere P, Pouchan C (2009) J Chem Phys 131:114105

    Article  Google Scholar 

  66. Avaltroni F, Corminboeuf CC (2012) J Comput Chem 33:502

    Article  CAS  Google Scholar 

  67. Wigner E, Witmer EE (1928) Z Phys 51:859

    Article  CAS  Google Scholar 

  68. de Heer WA (1993) Rev Mod Phys 65:611

    Article  Google Scholar 

  69. Hati S, Datta D (1994) J Phys Chem 98:10451

    Article  CAS  Google Scholar 

  70. Ghanti TK, Ghosh SK (1994) J Phys Chem 98:9197

    Article  Google Scholar 

  71. Paier J, Marsman M, Kresse G (2007) J Chem Phys 127:024103

    Article  Google Scholar 

Download references

Acknowledgment

Complete computations using Gaussian’03 were performed at the cluster computing facility, Harish-Chandra Research Institute, Allahabad, UP, India (http://cluster.hri.res.in).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Bandyopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhaka, K., Trivedi, R. & Bandyopadhyay, D. Electronic structure and stabilities of Ni-doped germanium nanoclusters: a density functional modeling study. J Mol Model 19, 1473–1488 (2013). https://doi.org/10.1007/s00894-012-1690-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1690-y

Keywords

Navigation