Skip to main content

Advertisement

Log in

Specificities of boron disubstituted sumanenes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this article we focused on computational research of sumanenes disubstituted by boron where the two carbon atoms are substituted by two boron atoms. Disubstitution of rim carbon atoms with boron atoms significantly affected the geometry of the bowl. The main stability factors were used to determine the stability of isomers. The most stable, the shallowest and the deepest isomers were subjected to further study of NMR parameters, chemical shielding and NICS, aromaticity, bowl to bowl inversion barrier and NBO/NPA analysis. The introduction of boron atoms significantly affected the above parameters, changing the aromatic nature of rings, reducing bowl to bowl inversion barrier and produced charge transfer. The NICS are correlated with bowl depth having the result that the function of the fourth degree of bowl depth does not only correlate well to the bowl to bowl inversion barrier with bowl depth, but also finely correlates the change of the NICS and NICSzz with bowl depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Amaya T, Hirao T (2011) A molecular bowl sumanene. Chem Commun 47:10524–10535

    Article  CAS  Google Scholar 

  2. Sakurai H, Daiko T, Hirao T (2003) A synthesis of sumanene, a fullerene fragment. Science 301:1878–1878

    Article  CAS  Google Scholar 

  3. Bianco A (2004) Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 1:57–65

    Article  CAS  Google Scholar 

  4. Lee H-J, Choi WS, Nguyen T, Lee YB, Lee H (2011) An easy method for direct metal coordination reaction on unoxidized single-walled carbon nanotubes. Carbon 49:5150–5157

    Article  CAS  Google Scholar 

  5. Yeung CS, Wang YA (2011) Lewis acidity of Pt-doped buckybowls, fullerenes, and single-walled carbon nanotubes. J Phys Chem C 115:7153–7163

    Article  CAS  Google Scholar 

  6. Vostrowsky O, Hirsch A (2006) Heterofullerenes. Chem Rev 106:5191–5207

    Article  CAS  Google Scholar 

  7. Denis PA (2008) Theoretical investigation of nitrogen disubstituted corannulenes. J Mol Struct (THEOCHEM) 865:8–13

    Article  CAS  Google Scholar 

  8. Cauët E, Jacquemin D (2012) A theoretical spectroscopy investigation of oxosumanenes. Chem Phys Lett 519:49–53

    Article  Google Scholar 

  9. Sakurai H, Daiko T, Sakane H, Amaya T, Hirao T (2005) Structural elucidation of sumanene and generation of its benzylic anions. J Am Chem Soc 127:11580–11581

    Article  CAS  Google Scholar 

  10. Mehta G, Shah SR, Ravikumar K (1993) Towards the design of tricyclopenta[def, jk/, pqr]triphenylene (’sumanene’): a ‘bowl-shaped‘hydrocarbon featuring a structural motif Present in C60 (buckminsterfullerene). J Chem Soc Chem Commun 12:1006–1008

    Article  Google Scholar 

  11. Silverstein RM, Webster FX (1997) Spectrometric identification of organic compounds. Wiley, New York

  12. Ghafouri R, Anafcheh M (2012) A computational NICS and 13C NMR characterization of C60-nSin heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30). J Clust Sci 23:469–480

    Article  CAS  Google Scholar 

  13. Corminboeuf C, Fowler PW, Heine T (2002) 13C NMR patterns of C36H2x fullerene hydrides. Chem Phys Lett 361:405–410

    Article  CAS  Google Scholar 

  14. Anafcheh M, Hadipour NL (2011) A computational NICS and 13C NMR characterization of BN-substituted 60C fullerenes. Phys E 44:400–404

    Article  CAS  Google Scholar 

  15. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  16. Goldfuss B, Von Ragué SP (1997) Aromaticity in group 14 metalloles: structural, energetic, and magnetic criteria. Organometallics 16:1543–1552

    Article  CAS  Google Scholar 

  17. Jiao H, Von Ragué SP, Mo Y, McAllister MA, Tidwell TT (1997) Magnetic evidence for the aromaticity and antiaromaticity of charged fluorenyl, indenyl, and cyclopentadienyl systems. J Am Chem Soc 119:7075–7083

    Article  CAS  Google Scholar 

  18. Zywietz TK, Jiao H, Schleyer PVR, De Meijere A (1998) Aromaticity and antiaromaticity in oligocyclic annelated five-membered ring systems. J Org Chem 63:3417–3422

    Article  CAS  Google Scholar 

  19. Becke AD (1988) Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  21. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JRT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford, CT

  23. Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  24. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  25. Chandrakumar KRS, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108:6661–6666

    Article  CAS  Google Scholar 

  26. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  27. Corminboeuf C, Heine T, Seifert G, Von Ragué SP, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  28. Scott LT, Hashemi MM, Bratcher MS (1992) Corannulene bowl-to-bowl inversion is rapid at room temperature. J Am Chem Soc 114:1920–1921

    Article  CAS  Google Scholar 

  29. Wu Y-T, Siegel JS (2006) Aromatic molecular-bowl hydrocarbons, synthetic derivatives, their structures, and physical properties. Chem Rev 106:4843–4867

    Article  CAS  Google Scholar 

  30. Amaya T, Sakane H, Muneishi T, Hirao T (2008) Bowl-to-bowl inversion of sumanene derivatives. Chem Commun 6:765–767

    Article  Google Scholar 

  31. Amaya T, Sakane H, Nakata T, Hirao T (2010) Pure Appl Chem 82:969–978

    Article  CAS  Google Scholar 

  32. Peng C, Schlegel HB (1993) Combining synchronous transit and quasi-newton methods for finding transition states. Isr J Chem 33:449–454

    CAS  Google Scholar 

  33. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) Using redundant coordinates to optimize equilibrium geometries and transition states. J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  34. Bürgi H-B, Dubler-Steudle KC (1988) Empirical potential energy surfaces relating structure and activation energy. 1. Metallacyclopentene ring inversion in (s-cis-η4-butadiene)metallocene complexes and related compounds. J Am Chem Soc 110:4953–4957

    Article  Google Scholar 

  35. Priyakumar UD, Sastry GN (2001) Heterobucky bowls: a theoretical study on the structure, bowl-to-bowl inversion barrier, bond length alternation, structure-inversion barrier relationship, stability, and synthetic feasibility. J Org Chem 66:6523–6530

    Article  CAS  Google Scholar 

  36. Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2012) Active components of frequently used β-blockers from the aspect of computational study. J Mol Model 18:4491–4501

    Article  Google Scholar 

  37. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  38. Rossini AJ, Mills RW, Briscoe GA, Norton EL, Geier SJ, Hung I, Zheng S, Autschbach J, Schurko RW (2009) Solid-state chlorine NMR of group IV transition metal organometallic complexes. J Am Chem Soc 131:3317–3330

    Article  CAS  Google Scholar 

  39. Autschbach J, Zheng S (2008) Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: the role of Pt 5d lone pairs. Magn Reson Chem 46:S45–S55

    Article  Google Scholar 

  40. Autschbach J, Zheng S, Schurko R (2010) Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs. Concepts Magn Reson A 36:84–126

    Google Scholar 

  41. Xavier RJ, Gobinath E (2012) FT-IR, FT-Raman, ab initio and DFT studies, HOMO–LUMO and NBO analysis of 3-amino-5-mercapto-1,2,4-triazole. Spectrochim Acta A 86:242–251

    Article  CAS  Google Scholar 

  42. Irikura KK (1998) Computational thermochemistry: Prediction and estimation of molecular thermodynamics (ACS Symposium Series 677). American Chemical Society, Washington

    Book  Google Scholar 

  43. Priyakumar UD, Sastry GN (2001) First ab initio and density functional study on the structure, bowl-to-bowl inversion barrier, and vibrational spectra of the elusive C -symmetric buckybowl: sumanene, C21H12. J Phys Chem A 105:4488–4494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Professor Enrique Louis Cereceda, Departamento de Fisica Aplicada, Universidad de Alicante and Professor Emilio San Fabián Maroto, Departamento de Química Física, Universidad de Alicante, for help and access to Gaussian 03. Without their support we would not be able to conduct research.

We also express our gratitude to our dear friend and colleague Igor Vragović, Departmento de Fisica Aplicada, Universidad de Alicante for kind support and very useful guides.

This work is done within the project of the Ministry of Education and Science of Republic of Serbia grant no. OI 171039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevan Armaković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armaković, S., Armaković, S.J., Šetrajčić, J.P. et al. Specificities of boron disubstituted sumanenes. J Mol Model 19, 1153–1166 (2013). https://doi.org/10.1007/s00894-012-1654-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1654-2

Keywords

Navigation