Skip to main content
Log in

Global and local reactivity indexes applied to understand the chemistry of graphene oxide and doped graphene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

At the density functional theory level, the electronic reactivity of oxidized and doped (with N, B, and P) graphene (G) has been analyzed. Molecular hardness and electrophilicity were used as global reactivity descriptors, while those at the local level, Fukui functions, Mulliken charges and molecular electrostatic potential were used in the order to characterize the intramolecular and intermolecular reactivity. These descriptors show that in GO, the global and local reactivity of the basal plane is improved mainly by hydroxyl groups, which improve besides the physisorption of small molecules, while, the active carbon atoms around the functional group would allow enhancement of the consecutively chemisorption. Furthermore, epoxide, carbonyl and carboxyl groups allow mainly enhancement of intermolecular non-covalent interactions. On the other hand, doping with N and B atoms increases the electrophilic character and the reactivity in the bulk. Specifically, in N-doped G, N and around carbon atoms would be able to serve as active sites of detection by frontier-controlled processes, explaining the improvement in electrochemical sensing; in addition, electron-deficient carbon atoms around N enhance the physisorption. Respecting the B-doped G, dopant and carbon atoms adjacent to B act as donor sites, suggesting that adsorption of cations on B-doped G is a frontier-controlled process; moreover, positively-charged B atoms enhance charge-controlled interactions with polarized molecules, and consecutively, in a frontier-controlled step, chemisorption is possible. Finally, P-doping increases the electrophilic reactivity in the bulk; also, P atoms enhance the physisorption of chemical species with negatively-charged centers or lone-pair electrons, and consecutively, chemisorption on P is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9–10):351–355

    Article  CAS  Google Scholar 

  2. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  3. Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS (2012) Thermal conductivity of isotopically modified graphene. Nat Mater 11:203–217

    Article  CAS  Google Scholar 

  4. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  5. Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Letters 10(2):398–405

    Article  CAS  Google Scholar 

  6. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102(23):4477–4482

    Article  CAS  Google Scholar 

  7. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321(5897):1815–1817

    Article  CAS  Google Scholar 

  8. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339

    Article  CAS  Google Scholar 

  9. Chunder A, Pal T, Khondaker SI, Zhai L (2010) Reduced graphene oxide/copper phthalocyanine composite and its optoelectrical properties. J Phys Chem C 114(35):15129–15135

    Article  CAS  Google Scholar 

  10. Zhu J, Li Y, Chen Y, Wang J, Zhang B, Zhang J, Blau WJ (2011) Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 49(6):1900–1905

    Article  CAS  Google Scholar 

  11. Pyun J (2011) Graphene oxide as catalyst: application of carbon materials beyond nanotechnology. Angew Chem Int Ed 50(1):46–48

    Article  CAS  Google Scholar 

  12. Ji Z, Shen X, Zhu G, Zhou H, Yuan A (2012) Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. J Mater Chem 22(8):3471–3477

    Article  CAS  Google Scholar 

  13. Zhang N, Qiu H, Liu Y, Wang W, Li Y, Wang X, Gao J (2011) Fabrication of gold nanoparticle/graphene oxide nanocomposites and their excellent catalytic performance. J Mater Chem 21(30):11080–11083

    Article  CAS  Google Scholar 

  14. Wei Y, Gao C, Meng F-L, Li H-H, Wang L, Liu J-H, Huang X-J (2011) SnO2/Reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and Mercury(II): an interesting favorable mutual interference. J Phys Chem C 116(1):1034–1041

    Article  Google Scholar 

  15. Qian Z, Shaojun Y, Jing Z, Ling Z, Pingli K, Jinghong L, Jingwei X, Hua Z, Xi-Ming S (2011) Fabrication of an electrochemical platform based on the self-assembly of graphene oxide–multiwall carbon nanotube nanocomposite and horseradish peroxidase: direct electrochemistry and electrocatalysis. Nanotechnology 22(49):494010

    Article  Google Scholar 

  16. Geng D, Yang S, Zhang Y, Yang J, Liu J, Li R, Sham T-K, Sun X, Ye S, Knights S (2011) Nitrogen doping effects on the structure of graphene. Appl Surf Sci 257(21):9193–9198

    Article  CAS  Google Scholar 

  17. Denis PA (2011) Chemical reactivity of lithium doped monolayer and bilayer graphene. J Phys Chem C 115(27):13392–13398

    Article  CAS  Google Scholar 

  18. Dai J, Yuan J, Giannozzi P (2009) Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl Phys Lett 95(23):232105

    Article  Google Scholar 

  19. Cazorla C (2010) Ab initio study of the binding of collagen amino acids to graphene and A-doped (A=H, Ca) graphene. Thin Solid Films 518(23):6951–6961

    Article  CAS  Google Scholar 

  20. Mousavi H, Moradian R (2011) Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci 13(8):1459–1464

    Article  CAS  Google Scholar 

  21. Gao S, Ren Z, Wan L, Zheng J, Guo P, Zhou Y (2011) Density functional theory prediction for diffusion of lithium on boron-doped graphene surface. Appl Surf Sci 257(17):7443–7446

    Article  CAS  Google Scholar 

  22. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  CAS  Google Scholar 

  23. Zhou YG, Zu XT, Gao F, Nie JL, Xiao HY (2009) Adsorption of hydrogen on boron-doped graphene: a first-principles prediction. J Appl Phys 105(1):014309

    Article  Google Scholar 

  24. Hernández Rosas J, Ramírez Gutiérrez R, Escobedo-Morales A, Chigo Anota E (2011) First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide. J Mol Model 17(5):1133–1139

    Article  Google Scholar 

  25. Peralta-Inga Z, Murray JS, Edward Grice M, Boyd S, O’Connor CJ, Politzer P (2001) Computational characterization of surfaces of model graphene systems. J Mol Struct (THEOCHEM) 549(1–2):147–158

    Article  CAS  Google Scholar 

  26. Radovic LR (2009) Active sites in graphene and the mechanism of CO2 formation in carbon oxidation. J Am Chem Soc 131(47):17166–17175

    Article  CAS  Google Scholar 

  27. Acharya CK, Sullivan DI, Turner CH (2008) Characterizing the interaction of Pt and PtRu clusters with boron-doped, nitrogen-doped, and activated carbon: density functional theory calculations and parameterization. J Phys Chem C 112(35):13607–13622

    Article  CAS  Google Scholar 

  28. Berashevich J, Chakraborty T (2010) Doping graphene by adsorption of polar molecules at the oxidized zigzag edges. Phys Rev B 81(20):205431

    Article  Google Scholar 

  29. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  CAS  Google Scholar 

  30. Wang X, Zeng Z, Ahn H, Wang G (2009) First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Appl Phys Lett 95(18):183103

    Article  Google Scholar 

  31. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730

    CAS  Google Scholar 

  32. Beheshti E, Nojeh A, Servati P (2011) A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon 49(5):1561–1567

    Article  CAS  Google Scholar 

  33. Baltazar SE, García ALE, Pérez-Robles JF, Romero AH, Rubio Secades Á (2008) Influence of S and P doping in a graphene sheet. J Comput Theor Nanosci 5:1–9

    Article  Google Scholar 

  34. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103(5):1793–1874

    Article  CAS  Google Scholar 

  35. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516

    Article  CAS  Google Scholar 

  36. Parr RG, Lv S, Liu S (1999) Electrophilicity index. J Am Chem Soc 121(9):1922–1924

    Article  CAS  Google Scholar 

  37. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity Index. Chem Rev 106(6):2065–2091

    Article  CAS  Google Scholar 

  38. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106(14):4049–4050

    Article  CAS  Google Scholar 

  39. Pérez P, Toro-Labbé A, Aizman A, Contreras R (2002) Comparison between experimental and theoretical scales of electrophilicity in benzhydryl cations. J Org Chem 67(14):4747–4752

    Article  Google Scholar 

  40. Chattaraj PK, Maiti B, Sarkar U (2003) Philicity: a unified treatment of chemical reactivity and selectivity. J Phys Chem A 107(25):4973–4975

    Article  CAS  Google Scholar 

  41. Chattaraj PK (2000) Chemical reactivity and selectivity: local HSAB principle versus frontier orbital theory. J Phys Chem A 105(2):511–513

    Article  Google Scholar 

  42. Fievez T, Weckhuysen BM, Geerlings P, Proft FD (2009) Chemical reactivity indices as a tool for understanding the support-effect in supported metal oxide catalysts. J Phys Chem C 113(46):19905–19912

    Article  CAS  Google Scholar 

  43. Cote LJ, Kim F, Huang J (2008) Langmuir−Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131(3):1043–1049

    Article  Google Scholar 

  44. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110(17):8535–8539

    Article  CAS  Google Scholar 

  45. Pandey D, Reifenberger R, Piner R (2008) Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surf Sci 602(9):1607–1613

    Article  CAS  Google Scholar 

  46. Stewart JP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12):1173–1213

    Article  CAS  Google Scholar 

  47. MOPAC2009, James J. P. Stewart, Stewart Computational Chemistry, Version 11.038W web: http://OpenMOPAC.net

  48. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys Rev Lett 77, 3865 (1996)]. Phys Rev Lett 78(7):1396–1396

    Google Scholar 

  49. Neese F (2004) ORCA—an ab initio, Density Functional and Semiempirical program package, Version 2.8. Max-Planck-Insitut für Bioanorganische Chemie, Mülheim and der Ruhr

  50. Allouche A-R (2011) Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32(1):174–182

    Article  CAS  Google Scholar 

  51. Tang S, Cao Z (2011) Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. J Chem Phys 134(4):044710

    Article  Google Scholar 

  52. Al-Aqtash N, Vasiliev I (2011) Ab initio study of boron- and nitrogen-doped graphene and carbon nanotubes functionalized with carboxyl groups. J Phys Chem C 115(38):18500–18510

    Article  CAS  Google Scholar 

  53. Wang D-W, Gentle IR, Lu GQ (2010) Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem Commun 12(10):1423–1427

    Article  CAS  Google Scholar 

  54. Fan H, Li Y, Wu D, Ma H, Mao K, Fan D, Du B, Li H, Wei Q (2012) Electrochemical bisphenol A sensor based on N-doped graphene sheets. Anal Chim Acta 711:24–28

    Article  CAS  Google Scholar 

  55. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  CAS  Google Scholar 

  56. Sheng Z-H, Zheng X-Q, Xu J-Y, Bao W-J, Wang F-B, Xia X-H (2012) Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 34(1):125–131

    Article  CAS  Google Scholar 

  57. Okamoto Y (2009) First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon. Appl Surf Sci 256(1):335–341

    Article  CAS  Google Scholar 

  58. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  CAS  Google Scholar 

  59. Yu L, Pan X, Cao X, Hu P, Bao X (2011) Oxygen reduction reaction mechanism on nitrogen-doped graphene: a density functional theory study. J Catal 282(1):183–190

    Article  CAS  Google Scholar 

  60. Zhang L, Xia Z (2011) Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J Phys Chem C 115(22):11170–11176

    Article  CAS  Google Scholar 

  61. Zhang L, Niu J, Dai L, Xia Z (2012) Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells. Langmuir 28(19):7542–7550

    Article  CAS  Google Scholar 

  62. Li Y, Wang J, Li X, Geng D, Banis MN, Li R, Sun X (2012) Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochem Commun 18:12–15

    Article  CAS  Google Scholar 

  63. Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20(18):185504

    Article  Google Scholar 

  64. Dai J, Yuan J (2010) Adsorption of molecular oxygen on doped graphene: atomic, electronic, and magnetic properties. Phys Rev B 81(16):165414

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Juan M. Perez for the provided help in the last stage of the article, and to reviewers for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Cortés Arriagada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés Arriagada, D. Global and local reactivity indexes applied to understand the chemistry of graphene oxide and doped graphene. J Mol Model 19, 919–930 (2013). https://doi.org/10.1007/s00894-012-1642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1642-6

Keywords

Navigation