Skip to main content

Advertisement

Log in

Theoretical investigation of a novel high density cage compound 4,8,11,14,15–pentanitro-2,6,9,13–tetraoxa-4,8,11,14,15-pentaazaheptacyclo[5.5.1.13,11. 15,9] pentadecane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A novel polynitro cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15–pentaazaheptacyclo [5.5.1.13,11.15,9]pentadecane(PNTOPAHP) has been designed and investigated at the DFT-B3LYP/6-31(d) level. Properties, such as electronic structure, IR spectrum, heat of formation, thermodynamic properties and crystal structure have been predicted. This compound is most likely to crystallize in C2/c space group, and the corresponding cell parameters are Z = 8, a = 29.78 Å, b = 6.42 Å, c = 32.69 Å, α = 90.00°, β = 151.05°, γ = 90.00°and ρ = 1.94 g/cm3. In addition, the detonation velocity and pressure have also been calculated by the empirical Kamlet-Jacobs equation. As a result, the detonation velocity and pressure of this compound are 9.82 km/s, 44.67 GPa, respectively, a little higher than those of 4,10-dinitro-2,6,8,12–tetraoxa−4,10-diazaisowurtzitane(TEX, 9.28 km/s, 40.72 GPa). This compound has a comparable chemical stability to TEX, based on the N-NO2 trigger bond length analysis. The bond dissociation energy ranges from 153.09 kJ mol–1 to 186.04 kJ mol–1, which indicates that this compound meets the thermal stability requirement as an exploitable HEDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Klapotke TM (2007) New nitrogen-rich high explosives. Springer, Berlin

    Google Scholar 

  2. Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) Computational studies on polynitrohexazaadmantanes as potential high energy denstiy materials. J Phys Chem A 110:5929–5933

    Article  CAS  Google Scholar 

  3. Wang GX, Gong XD, Xiao HM (2009) Theoretical investigation on density, detonation properties, and pyrolysis mechanism of nitro derivatives of benzene and aminobenzenes. Int J Quantum Chem 109:1522–1530

    Article  CAS  Google Scholar 

  4. Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2012) Theoretical investigations of a high density cage compound 10-(1-nitro-1,2,3,4-tetraazol-5-yl)methyl-2,4,6,8,12-hexanitrohexazaisowurtzitane. J Mol Model 18:165–170

    Article  CAS  Google Scholar 

  5. Zhang JY, Du HC, Wang F, Gong XD, Huang YS (2011) DFT studies on high energy density cage compound 4-trinitroethyl-2,6,8,10,12-pentanitroheazaisowurtzitane. J Phys Chem A 115:6617–6621

    Article  CAS  Google Scholar 

  6. Zeman S, Jalovy Z (2000) Heats of fusion of polynitro derivates of polyazaisowurtzitane. Thermochim Acta 345:31–38

    Article  CAS  Google Scholar 

  7. Gobel M, Klapotke TM (2009) Development and testing of energetiv materials: the concept of high densities based on the trinitroethyl functionality. Adv Funct Mater 19:347–365

    Article  Google Scholar 

  8. Agrawal JP (2005) Some new high energy materials and their formulations for specialized applications. Propellants Explos Pyrotech 30:316–328

    Article  CAS  Google Scholar 

  9. Singh RP, Verma RD, Meshri DT, Shreeve JM (2006) Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int ED 45:3584–3601

    Article  CAS  Google Scholar 

  10. Politzer P, Lane P, Murray JS (2011) Computational characterization of a potential energetic compound: 1,3,5,7-tetranitro-2,4,6,8-tetraazacubane. Cent Eur J Energetic Mater 8:39–52

    CAS  Google Scholar 

  11. Jalovy Z, Matyas R, Klasovity D, Zeman S (2010) Contribution to the synthesis of 4,10-dinitro 2,6,8,12-tetraoza-4,10-diazatetracyclo[5.5.0.05,903,11]dodecane (TEX). Cent Eur J Chem 7:189–196

    CAS  Google Scholar 

  12. Frisch MJ et al. (2003) Gaussian 03, Revision A.1 Gaussian lnc, Pittsburgh, PA

  13. Accelrys (2009) Materials Studio 4.4. Accelrys, San Diego

  14. Becke AD (1993) Density-functional thermochemistry. III. The role of the exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  15. Qiu L, Xiao HM, Ju XH, Gong XD (2005) Theoretical study of the structures and properties of cyclic nitramines: tetranitrotetraazadecalin (TNAD) and its isomers. Int J Quantum Chem 105:48–56

    Article  CAS  Google Scholar 

  16. Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J Phys Chem A 109:11268–11274

    Article  CAS  Google Scholar 

  17. Wei T, Zhu WH, Zhang XW, Li YF, Xiao HM (2009) Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J Phys Chem A 113:9404–9412

    Article  CAS  Google Scholar 

  18. Qiu LM, Gong XD, Zheng J, Xiao HM (2009) Theoretical studies on polynitro-1,3-bishomophentaprismanes as potential high energy density compounds. J Hazard Mater 166:931–938

    Article  CAS  Google Scholar 

  19. Scott AP, Leo R (1996) Harmonic vibrational frequencies: an evaluation of Hartree−Fock, Møller−Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  20. Gutowski KE, Rogers RD, Dixon DA (2007) Accurate thermochemical properties for energetic materials application. II. Heat of formation of imidazolium-, 1,2,4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. J Phys Chem B 4788–4800

  21. Guo Y, Gao H, Twamley B, Shreeve JM (2007) Energetic nitrogen rich salts of N, N-bis[1(2)H-tetrazol-5-yl]amine. Adv Mater 19:2884–2888

    Article  CAS  Google Scholar 

  22. Fan XW, Ju XH (2008) Theoretical studies on four-membered ring compound with NF2, ONO2, N3, and NO2 group. J Comput Chem 29:505–513

    Article  CAS  Google Scholar 

  23. Lide DR (2002) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  24. Akhavan J (1998) The chemistry of explosive. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  25. Kamlet MJ, Jabcobs SJ (1968) Chemistry of detonation. I. A simple method of calculating the detonation properties of C-H-N-O explosives. J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  26. Li JS (2010) Relationships for the impact sensitivities of energetic C-nitro compounds based on bond dissociation energy. J Phys Chem B 114:2198–2202

    Article  CAS  Google Scholar 

  27. Song XS, Cheng XL, Yang XD, Li DH, Feng R, Hu L (2007) Correlation between the bond dissociation energies and impact sensitivities in nitramine and polynitro benzoate molecules with polynitro alkyl groupings. J Hazard Mater 150:317–321

    Article  Google Scholar 

  28. Li XH, Zhang RZ, Zhang XZ (2010) Computational study of imidazole derivative as high energetic materials. J Hazard Mater 183:622–631

    Article  CAS  Google Scholar 

  29. Brill BT, James JK (1993) Kinetics and mechanisms of thermal decomposition of nitroaromatic explosives. Chem Rev 93:2667–2692

    Article  CAS  Google Scholar 

  30. Gao A, Rheingold AL, Brill BT (2004) Thermal decomposition of energetic materials. A trigger linkage study of high-nitrogen content nitraminotetrazoles and nitramino-1,2,4-triazoles. Propellants Explos Pyrotech 16:97–104

    Article  Google Scholar 

  31. Zhang CY, Shu YJ, Huang YG, Zhao XD, Dong HS (2005) Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  32. Valencia H, Gil A, Frapper G (2010) Trends in the adsorption of 3d transition metal atoms onto graphene and nanotube surfaces: a DFT study and molecular orbital analysis. J Phys Chem C 114:14141–14153

    Article  CAS  Google Scholar 

  33. Shang J, Zhang JG, Zhang TL, Huang HS, Zhang SW, Zhou ZN (2012) First-principles study of energetic complexes (II): (5-cyanotetrazolato-N2)pentaammine cobalt (III) perchlorate (CP) and Ni, Fe and Zn analogues. J Mol Model 18:2855–2860

    Article  CAS  Google Scholar 

  34. Wei T, Zhu WH, Zhang JJ, Xiao HM (2010) DFT study on energetic tetrazolo-[1,5-b]-1,2,4,5-tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives. J Hazard Mater 179:1–3

    Article  Google Scholar 

  35. Hoffmann R (1988) Solids and surfaces: a chemists view of bonding in the extended structures. Wiley-VCH, New York

    Google Scholar 

  36. Wei CX, Huang H, Duan XH, Pei CH (2011) Structures and properties prediction of HMX/TATB co-crystal. Propellants Explos Pyrotech 36:416–423

    Article  CAS  Google Scholar 

  37. Liu H, Wang F, Wang GX, Gong XD (2012) Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX. J Comput Chem 33:1790–1796

    Article  CAS  Google Scholar 

  38. Li MM, Wang GX, Guo XD, Wu ZW, Song HC (2009) Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of four trinitrate esters. J Mol Struct THEOCHEM 900:1–3

    Article  Google Scholar 

  39. Chernikova NY, Belskii VK, Zorkii PM (1990) New statistical data on the topology of homomolecular organic crystals. J Struct Chem 31:661–666

    Article  Google Scholar 

  40. Wilson AJC (1988) Space groups rare for organic structures. I. Triclinic, monoclinic and orthorhombic crystal classes. Acta Crystallogr A 44:715–724

    Article  Google Scholar 

  41. Srinivasan R (1992) On space-group frequencies. Acta Crystallogr A 48:917–918

    Article  Google Scholar 

  42. Mighell AD, Himes VL, Rodgers JR (1983) Space group frequencies for organic compounds. Acta Crystallogr A 39:737–740

    Article  Google Scholar 

  43. Baur WH, Kassner D (1992) The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr B 48:356–369

    Article  Google Scholar 

  44. Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science, Beijing

    Google Scholar 

Download references

Acknowledgments

The support of the National Natural Science Foundation of China (Grant No.61106078) and NUST Research Funding (Grant No.2011ZDJH28) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-guan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Zhu, Sg., Zhang, L. et al. Theoretical investigation of a novel high density cage compound 4,8,11,14,15–pentanitro-2,6,9,13–tetraoxa-4,8,11,14,15-pentaazaheptacyclo[5.5.1.13,11. 15,9] pentadecane. J Mol Model 19, 1019–1026 (2013). https://doi.org/10.1007/s00894-012-1629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1629-3

Keywords

Navigation