Skip to main content

Advertisement

Log in

Molecular dipole effects on tuning electron transfer in a porphine–quinone complex: a DFT and TDDFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of a strong electric field generated by molecular dipoles on the ground state electronic structure and the Q and B states as well as the lowest charge transfer (CT) excited state of porphine–2,5-dimethyl-1,4-benzoquinone (PQ) complex has been investigated theoretically. Density functional theory DFT and time-dependent DFT (TDDFT) with the BH&HLYP hybrid functional have been applied in these calculations. The molecular dipole effect was generated by imposing one or two helical homopeptides consisting of eight α-aminoisobutyric acid residues (Aib8) close to the PQ complex. The molecular dipoles in a close proximity to the PQ complex expose it to an electric field of the order of magnitude of 109 V/m. The presence of the ambient molecular dipoles affects mainly the energy of the lowest CT state and barely the energies of the Q and B states. The molecular dipoles affect the energies of the excited states in a similar way as an external electrostatic field. Hence, the electric field induced by the molecular dipoles of the helical peptides could be used analogously to the external electrostatic field to control electron transfer (ET) in the PQ complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoff AJ, Deisenhofer J (1997) Phys Rep 287:1–247

    Article  CAS  Google Scholar 

  2. Aittala PJ, Cramariuc O, Hukka TI (2010) J Chem Theory Comput 6:805–816

    Article  CAS  Google Scholar 

  3. Marchiori CFN, Koehler M (2010) Synt Met 160:643–650

    Article  CAS  Google Scholar 

  4. Ohta N, Mikami S, Iwaki Y, Tsushima M, Imahori H, Tamaki K, Sakata Y, Fukuzumi S (2003) Chem Phys Lett 368:230–235

    Article  CAS  Google Scholar 

  5. Kimura S (2008) Org Biomol Chem 6:1143–1148

    Article  CAS  Google Scholar 

  6. Nakabayashi T, Hino K, Ohta Y, Ito S, Nakano H, Ohta N (2011) J Phys Chem B 115:8622–8626

    Article  CAS  Google Scholar 

  7. Hol WGJ (1985) Prog Biophys Mol Biol 45:149–195

    Article  CAS  Google Scholar 

  8. Galoppini E, Fox MA (1996) J Am Chem Soc 118:2299–2300

    Article  CAS  Google Scholar 

  9. Fox MA, Galoppini E (1997) J Am Chem Soc 23:5277–5285

    Article  Google Scholar 

  10. Nakayama H, Morita T, Kimura S (2009) Phys Chem Chem Phys 11:3967–3976

    Article  CAS  Google Scholar 

  11. Gessmann R, Brückner H, Petratos K (2003) J Peptide Sci 9:753–762

    Article  CAS  Google Scholar 

  12. Improta R, Barone V, Kudin KN, Scuseria GE (2011) J Am Chem Soc 123:3311–3322

    Article  Google Scholar 

  13. Improta R, Barone V, Kudin NK, Scuseria GE (2011) J Phys Chem 114:2541–2549

    Google Scholar 

  14. Magyar RJ, Tretiak S (2007) J Chem Theory Comput 3:976–987

    Article  CAS  Google Scholar 

  15. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346–354

    Article  CAS  Google Scholar 

  16. von Arnim M, Ahlrichs R (1998) J Comput Chem 19:1746–1757

    Article  Google Scholar 

  17. Dirac PAM (1929) Proc Royal Soc (London) A 123:714–733

    Article  CAS  Google Scholar 

  18. Slater JC (1951) Phys Rev 81:385–390

    Article  CAS  Google Scholar 

  19. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13279

    Article  Google Scholar 

  20. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  21. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Becke AD (1993) J Chem Phys 98:1372–1377

    Article  CAS  Google Scholar 

  24. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  25. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5833

    Article  Google Scholar 

  26. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  27. Bauernschmitt R, Häser M, Treutler O, Ahlrichs R (1997) Chem Phys Lett 364:573–578

    Article  Google Scholar 

  28. Furche F, Ahlrichs R (2002) J Chem Phys 117: 7433–7447; (2004) J Chem Phys 121: 12772–12773 (E)

    Google Scholar 

  29. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  30. Sengupta D, Behera RN, Smith JC, Ullmann GM (2005) Structure 23:849–855

    Article  Google Scholar 

  31. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Acknowledgments

Prof. H. Lemmetyinen, the head of the Laboratory of Chemistry at Tampere University of Technology, is acknowledged for offering the facilities for this research. Computing resources provided by the CSC – IT Center for Science Ltd, administrated by the Finnish Ministry of Education, are acknowledged. Financing of this research by the Academy of Finland is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terttu I. Hukka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cramariuc, O., Aittala, P.J. & Hukka, T.I. Molecular dipole effects on tuning electron transfer in a porphine–quinone complex: a DFT and TDDFT study. J Mol Model 19, 697–704 (2013). https://doi.org/10.1007/s00894-012-1595-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1595-9

Keywords

Navigation