Skip to main content
Log in

DFT investigations of phosphotriesters hydrolysis in aqueous solution: a model for DNA single strand scission induced by N-nitrosoureas

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

DNA phosphotriester adducts are common alkylation products of DNA phosphodiester moiety induced by N-nitrosoureas. The 2-hydroxyethyl phosphotriester was reported to hydrolyze more rapidly than other alkyl phosphotriesters both in neutral and in alkaline conditions, which can cause DNA single strand scission. In this work, DFT calculations have been employed to map out the four lowest activation free-energy profiles for neutral and alkaline hydrolysis of triethyl phosphate (TEP) and diethyl 2-hydroxyethyl phosphate (DEHEP). All the hydrolysis pathways were illuminated to be stepwise involving an acyclic or cyclic phosphorane intermediate for TEP or DEHEP, respectively. The rate-limiting step for all the hydrolysis reactions was found to be the formation of phosphorane intermediate, with the exception of DEHEP hydrolysis in alkaline conditions that the decomposition process turned out to be the rate-limiting step, owing to the extraordinary low formation barrier of cyclic phosphorane intermediate catalyzed by hydroxide. The rate-limiting barriers obtained for the four reactions are all consistent with the available experimental information concerning the corresponding hydrolysis reactions of phosphotriesters. Our calculations performed on the phosphate triesters hydrolysis predict that the lower formation barriers of cyclic phosphorane intermediates compared to its acyclic counter-part should be the dominant factor governing the hydrolysis rate enhancement of DEHEP relative to TEP both in neutral and in alkaline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Chart 1
Chart 2
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. Gnewuch CT, Sosnovsky G (1997) Chem Rev 97:829–1014

    Article  CAS  Google Scholar 

  2. Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ (2002) Chem Rev 102:1091–1134

    Article  CAS  Google Scholar 

  3. Morimoto K, Tanaka A, Yamaha T (1983) Carcinogenesis 4:1455–1458

    Article  CAS  Google Scholar 

  4. Singer B, Grunberger D (1983) Molecular biology of mutagens and carcinogens. Plenum, New York

    Book  Google Scholar 

  5. Saffhill R (1984) Carcinogenesis 5:621–625

    Article  CAS  Google Scholar 

  6. Beranek DT (1990) Mutat Res 231:11–30

    Article  CAS  Google Scholar 

  7. Singer B (1976) Nature 264:333–339

    Article  CAS  Google Scholar 

  8. Singer B, Spengler S, Bodell WJ (1981) Carcinogenesis 2:1069–1073

    Article  CAS  Google Scholar 

  9. Swenson DH, Harbach PR, Trzos RJ (1980) Carcinogenesis 1:931–936

    Article  CAS  Google Scholar 

  10. Singer B (1975) Progress in nucleic acid research and molecular biology. Academic, New York

    Google Scholar 

  11. Lown JW, McLaughlin LW (1979) Biochem Pharmacol 28:1631–1638

    Article  CAS  Google Scholar 

  12. Walles S, Ehrenberg L (1968) Acta Chem Scand 22:2727–2729

    Article  CAS  Google Scholar 

  13. Gutin PH, Hilton J, Fein VJ, Allan AE, Rottman A, Walker MD (1977) Cancer Res 37:3761–3765

    CAS  Google Scholar 

  14. Erickson LC, Bradley MO, Kohn KW (1977) Cancer Res 37:3744–3750

    CAS  Google Scholar 

  15. Hilton J, Bowie DL, Gutin PH, Zito DM, Walker MD (1977) Cancer Res 37:2262–2266

    CAS  Google Scholar 

  16. Gamper HB, Tung ASC, Straub K, Bartholomew JC, Calvin M (1977) Science 197:671–674

    Article  CAS  Google Scholar 

  17. Swenson DH, Frei JV, Lawley PD (1979) J Natl Cancer Inst 63:1469–1473

    CAS  Google Scholar 

  18. Brown DM, Todd AR (1952) J Chem Soc p 44–51

  19. Lawley PD, Brookes P (1963) Biochem J 89:127–138

    CAS  Google Scholar 

  20. Bannon P, Verly WG (1972) Eur J Biochem 31:103–111

    Article  CAS  Google Scholar 

  21. Shooter KV (1976) Chem Biol Interact 13:151–163

    Article  CAS  Google Scholar 

  22. Swenson DH, Farmer PB, Lawley PD (1976) Chem Biol Interact 15:91–100

    Article  CAS  Google Scholar 

  23. Conrad J, Muller N, Eisenbrand G (1986) Chem Biol Interact 60:57–65

    Article  CAS  Google Scholar 

  24. Zeller WJ, Lijinsky W, Eisenbrand G (1985) J Cancer Res Clin Oncol 109:A46

    Article  Google Scholar 

  25. Zeller WJ, Fruhauf S, Chen G, Eisenbrand G, Lijinsky W (1989) Cancer Res 49:3267–3270

    CAS  Google Scholar 

  26. Lopez X, Dejaegere A, Karplus M (2001) J Am Chem Soc 123:11755–11763

    Article  CAS  Google Scholar 

  27. Kirby AJ, Lima MF, da Silva D, Nome F (2004) J Am Chem Soc 126:1350–1351

    Article  CAS  Google Scholar 

  28. Kirby AJ, Dutta-Roy N, da Silva D, Goodman JM, Lima MF, Roussev CD, Nome F (2005) J Am Chem Soc 127:7033–7040

    Article  CAS  Google Scholar 

  29. Kirby AJ, Lima MF, da Silva D, Roussev CD, Nome F (2006) J Am Chem Soc 128:16944–16952

    Article  CAS  Google Scholar 

  30. Klahn M, Rosta E, Warshel A (2006) J Am Chem Soc 128:15310–15323

    Article  Google Scholar 

  31. Berente I, Beke T, Naray-Szabo G (2007) Theor Chem Acc 118:129–134

    Article  CAS  Google Scholar 

  32. Rosta E, Kamerlin SCL, Warshel A (2008) Biochemistry 47:3725–3735

    Article  CAS  Google Scholar 

  33. Yang Y, Yu HB, York D, Elstner M, Cui Q (2008) J Chem Theor Comput 4:2067–2084

    Article  CAS  Google Scholar 

  34. Kirby AJ, Tondo DW, Medeiros M, Souza BS, Priebe JP, Lima MF, Nome F (2009) J Am Chem Soc 131:2023–2028

    Article  CAS  Google Scholar 

  35. Kamerlin SCL, Williams NH, Warshel A (2008) J Org Chem 73:6960–6969

    Article  CAS  Google Scholar 

  36. Florian J, Warshel A (1998) J Phys Chem B 102:719–734

    Article  CAS  Google Scholar 

  37. Aqvist J, Kolmodin K, Florian J, Warshel A (1999) Chem Biol 6:R71–R80

    Article  CAS  Google Scholar 

  38. Menegon G, Loos M, Chaimovich H (2002) J Phys Chem A 106:9078–9084

    Article  CAS  Google Scholar 

  39. Chang NY, Lim C (1997) J Phys Chem A 101:8706–8713

    Article  CAS  Google Scholar 

  40. Chang NY, Lim C (1998) J Am Chem Soc 120:2156–2167

    Article  CAS  Google Scholar 

  41. Iche-Tarrat N, Barthelat JC, Rinaldi D, Vigroux A (2005) J Phys Chem B 109:22570–22580

    Article  CAS  Google Scholar 

  42. Iche-Tarrat N (2010) J Mol Struc THEOCHEM 941:56–60

    Article  Google Scholar 

  43. Brown DM, Todd AR (1952) J Chem Soc p 52–58

  44. Zhou DM, Taira K (1998) Chem Rev 98:991–1026

    Article  CAS  Google Scholar 

  45. Lim C, Tole P (1992) J Am Chem Soc 114:7245–7252

    Article  CAS  Google Scholar 

  46. Lim C, Tole P (1992) J Phys Chem 96:5217–5219

    Article  CAS  Google Scholar 

  47. Tole P, Lim CM (1993) J Phys Chem 97:6212–6219

    Article  CAS  Google Scholar 

  48. Tole P, Lim C (1994) J Am Chem Soc 116:3922–3931

    Article  CAS  Google Scholar 

  49. Liu Y, Gregersen BA, Lopez X, York DM (2005) J Phys Chem B 109:19987–20003

    Article  CAS  Google Scholar 

  50. Lopez CS, Faza ON, de Lera AR, York DM (2005) Chem Eur J 11:2081–2093

    Article  CAS  Google Scholar 

  51. Liu Y, Gregersen BA, Hengge A, York DM (2006) Biochemistry 45:10043–10053

    Article  CAS  Google Scholar 

  52. Lopez X, Dejaegere A, Leclerc F, York DM, Karplus M (2006) J Phys Chem B 110:11525–11539

    Article  CAS  Google Scholar 

  53. Lopez X, Schaefer M, Dejaegere A, Karplus M (2002) J Am Chem Soc 124:5010–5018

    Article  CAS  Google Scholar 

  54. Range K, McGrath MJ, Lopez X, York DM (2004) J Am Chem Soc 126:1654–1665

    Article  CAS  Google Scholar 

  55. Westheimer FH (1968) Acc Chem Res 1:70–78

    Article  CAS  Google Scholar 

  56. Brown DM, Usher DA (1963) Proc Chem Soc p 309–310

  57. Brown DM, Usher DA (1965) J Am Chem Soc p 6547–6558

  58. Brown DM (1974) Basic principles in nucleic acid chemistry. Academic, New York

    Google Scholar 

  59. Kuimelis RG, McLaughlin LW (1998) Chem Rev 98:1027–1044

    Article  CAS  Google Scholar 

  60. Tomasi J, Persico M (1994) Chem Rev 94:2027–2094

    Article  CAS  Google Scholar 

  61. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  62. Mineva T, Russo N, Sicilia E (1998) J Comput Chem 19:290–299

    Article  CAS  Google Scholar 

  63. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  64. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  65. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  66. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  67. Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M (2009) Methods 49:202–216

    Article  CAS  Google Scholar 

  68. Rios-Font R, Rodriguez-Santiago L, Bertran J, Sodupe M (2007) J Phys Chem B 111:6021–6077

    Article  Google Scholar 

  69. Mayaan E, Range K, York DM (2004) J Biol Inorg Chem 9:807–817

    Article  CAS  Google Scholar 

  70. Liu Y, Lopez X, York DM (2005) Chem Commun 31:3909–3911

    Google Scholar 

  71. Tidor B, Karplus M (1994) J Mol Biol 238:405–414

    Article  CAS  Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussion 09, Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  73. Aksnes G, Bergesen K (1966) Acta Chem Scand 20:2508–2514

    Article  CAS  Google Scholar 

  74. Thatcher GRJ, Kluger R (1989) Adv Phys Org Chem 25:99–265

    Article  CAS  Google Scholar 

  75. Kluger R, Covitz F, Dennis E, Williams LD, Westheimer FH (1969) J Am Chem Soc 91:6066–6072

    Article  CAS  Google Scholar 

  76. Kluger R, Taylor SD (1990) J Am Chem Soc 112:6669–6671

    Article  CAS  Google Scholar 

  77. Kluger R, Taylor SD (1991) J Am Chem Soc 113:5714–5719

    Article  CAS  Google Scholar 

  78. Shiiba T, Komiyama M (1992) Tetrahedron Lett 33:5571–5574

    Article  CAS  Google Scholar 

  79. Kuimelis RG, McLaughlin LW (1995) Nucleic Acids Res 23:4753–4760

    Article  CAS  Google Scholar 

  80. Kuimelis RG, McLaughlin LW (1995) J Am Chem Soc 117:11019–11020

    Article  CAS  Google Scholar 

  81. Kuimelis RG, McLaughlin LW (1996) Biochemistry 35:5308–5317

    Article  CAS  Google Scholar 

  82. Thomson JB, Patel BK, Jimenez V, Eckart K, Eckstein F (1996) J Org Chem 61:6273–6281

    Article  CAS  Google Scholar 

  83. Kuimelis RG, McLaughlin LW (1997) Bioorgan Med Chem 5:1051–1061

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (No. 20907002), the Beijing Nova Program (No. 2009B08) and the Training Program Foundation for the Beijing Municipal Natural Science Foundation (No. 8113031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijiao Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Zhao, L. & Zhong, R. DFT investigations of phosphotriesters hydrolysis in aqueous solution: a model for DNA single strand scission induced by N-nitrosoureas. J Mol Model 19, 647–659 (2013). https://doi.org/10.1007/s00894-012-1592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1592-z

Keywords

Navigation