Skip to main content
Log in

Cyclo-hexa-peptides at the water/cyclohexane interface: a molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamic (MD) simulations have been performed to study the behaviors of ten kinds of cyclo-hexa-peptides (CHPs) composed of amino acids with the diverse hydrophilic/hydrophobic side chains at the water/cyclohexane interface. All the CHPs take the “horse-saddle” conformations at the interface and the hydrophilicity/hydrophobicity of the side chains influences the backbones’ structural deformations. The orientations and distributions of the CHPs at the interface and the differences of interaction energies (ΔΔE) between the CHPs and the two liquid phases have been determined. RDF analysis shows that the H-bonds were formed between the OC atoms of the CHPs’ backbones and Hw atoms of water molecules. N atoms of the CHPs’ backbones formed the H-bonds or van der Waals interactions with the water solvent. It was found that there is a parallel relationship between ΔΔE and the lateral diffusion coefficients (D xy ) of the CHPs at the interface. The movements of water molecules close to the interface are confined to some extent, indicating that the dynamics of the CHPs and interfacial water molecules are strongly coupled.

Scheme of the ten kinds of CHPs formed by even alternating D- and L- amino acids with the different hydrophilic/hydrophobic side chains. The letters in the parentheses stand for the abbreviations of the composed amino acids in the CHPs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from bacillus subtilis. Biologicals 25:289–297

    Article  CAS  Google Scholar 

  2. Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivative. J Antibiot 52:613–619

    Article  CAS  Google Scholar 

  3. Tendulkar SR, Saikumari YK, Patel V, Raghotama S, Munshi TK, Balaram P, Chattoo BB (2007) Isolation, purification and characterization of an antifungal molecule produced by bacillus licheniformis BC98, and its effect on phytopathogen magnaporthe grise. J Appl Microbiol 103:2331–2339

    Article  CAS  Google Scholar 

  4. Weber C, Wider G, von Freyberg B, Traber R, Braun W, Widmer H, Wuthrich K (1991) The NMR structure of cyclosporin a bound to cyclophilin in aqueous solution. Biochemistry 30:6563–6574

    Article  CAS  Google Scholar 

  5. Trevisan G, Maldaner G, Velloso NA, Sant’Anna GS, Ilha V, Gewehr CCV, Rubin MA, Morel AF, Ferreira J (2009) Antinociceptive effects of 14-membered cyclopeptide alkaloids. J Nat Prod 72:608–612

    Article  CAS  Google Scholar 

  6. Gang HZ, Liu JF, Mu BZ (2010) Molecular dynamics simulation of Surfactin derivatives at the decane/water interface at Low surface coverage. J Phys Chem B 114:2728–2737

    Article  CAS  Google Scholar 

  7. Liu J, Fan JF, Tang M, Zhou WQ (2010) Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube. J Phys Chem A 114:2376–2383

    Article  CAS  Google Scholar 

  8. Bagheri M, Keller S, Dathe M (2011) Interaction of W-substituted analogs of cyclo- RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity. Antimicrob Agents Chemother 55:788–797

    Article  CAS  Google Scholar 

  9. Jelokhani-Niaraki M, Kondejewski LH, Wheaton LC, Hodges RS (2009) Effect of ring size on conformation and biological activity of cyclic cationic antimicrobial peptides. J Med Chem 52:2090–2097

    Article  CAS  Google Scholar 

  10. Praveena G, Kolandaivel P (2008) Structural and dynamical studies of all-trans and all-cis Cyclo[(1R,3S)-γ-Acc-Gly]3 peptides. J Mol Model 14:1147–1157

    Article  CAS  Google Scholar 

  11. Praveena G, Kolandaivel P (2009) Interaction of metal ions with Cyclo[(1R,3S)-c-Acc-Gly]3 Hexapeptide –a theoretical study. J Mol Struct (THEOCHEM) 900:96–102

    Article  CAS  Google Scholar 

  12. Leodidis EB, Hatton TA (1990) Amino acids in AOT reversed Micelles. 2. The hydrophobic effect and hydrogen bonding as driving forces for interfacial solubilization. J Phys Chem 94:6411–6420

    Article  CAS  Google Scholar 

  13. Wolfenden R, Andersson L, Cullis PM, Southgate CCB (1981) Affinities of amino acid side chains for solvent water. Biochemistry 20:849–855

    Article  CAS  Google Scholar 

  14. Horinek D, Netz RR (2011) Can simulations quantitatively predict peptide transfer free energies to urea solutions? thermodynamic concepts and force field limitations. J Phys Chem A 115:6125–6136

    Article  CAS  Google Scholar 

  15. Nicolas JP (2003) Molecular dynamics simulation of surfactin molecules at the water- hexane interface. Biophys J 85:1377–1391

    Article  CAS  Google Scholar 

  16. Bonmatin JM, Genest M, Labbe H, Ptak M (1994) Solution three-dimensional structure of surfactin: a cyclic lipopeptide studied by 1 H-NMR, distance geometry, and molecular dynamics. Biopolymers 34:975–986

    Article  CAS  Google Scholar 

  17. Gallet X, Deleu M, Razafindralambo H et al (1999) Computer simulation of surfactin conformation at a hydrophobic/hydrophilic interface. Langmuir 15:2409–2413

    Article  CAS  Google Scholar 

  18. Gang HZ, Liu JF, Mu BZ (2010) Interfacial behavior of surfactin at the decane/water interface: a molecular dynamics simulation. J Phys Chem B 114(46):14947–14954

    Article  CAS  Google Scholar 

  19. Ahmad F, Constabel F, Geckler KE, Seeck OH, Seo YS et al (2005) X-ray reflectivity study of cyclic peptide monolayers at the air–water interface. Israel J Chem 45:345–352

    Article  CAS  Google Scholar 

  20. Ulmschneider JP, Smith JC, White SH, Ulmschneider MB (2011) In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions. J Am Chem Soc 133:15487–15495

    Article  CAS  Google Scholar 

  21. Khurana E, DeVane RH, Kohlmeyer A, Klein ML (2008) Probing peptide nanotube self-assembly at a liquid-liquid interface with coarse-grained molecular dynamics. Nano Lett 8:3626–3630

    Article  CAS  Google Scholar 

  22. Rapaport H, Kim HS, Kiaer K et al (1999) Crystalline cyclic peptide nanotubes at interfaces. J Am Chem Soc 121:1186–1191

    Article  CAS  Google Scholar 

  23. Ghadiri MR, Granja JR, Milligan RA, Duncan EM, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  CAS  Google Scholar 

  24. Liu J, Fan JF, Tang M, Cen M, Yan JF et al (2010) Water diffusion behaviors and transportation properties in transmembrane cyclic hexa-, octa- and decapeptide nanotubes. J Phys Chem B 114:12183–12192

    Article  CAS  Google Scholar 

  25. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  26. McCool MA, Woolf LA (1972) Self-diffusion measurements under pressure with a diaphragm cell. Theory of the method and experimental results for cyclohexane. High Temp-High Press 4:85–95

    CAS  Google Scholar 

  27. Nose S (1984) A molecular dynamics method for simulations in the Canonocal ensemble. Mol Phys 52:255–268

    Article  CAS  Google Scholar 

  28. Berendsen HJC, Postma JPM, van Gunsteren WE et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3692

    Article  CAS  Google Scholar 

  29. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  30. Smith W (1992) A replicated data molecular dynamics strategy for the parallel Ewald Sum. Comput Phys Commun 67:392–406

    Article  CAS  Google Scholar 

  31. Pang JY, Wang YJ, Xu GY, Han TT (2011) Molecular dynamics simulations of SDS, DTAB, and C12E8 monolayers adsorbed at the air/water surface in the presence of DSEP. J Phys Chem B 115:2518–2526

    Article  CAS  Google Scholar 

  32. Sedlmeier F, von Hansen Y, Mengyu L, Horinek D, Netz RR (2011) Water dynamics at interfaces and solutes: disentangling free energy and diffusivity contributions. J Stat Phys 145:240–252

    Article  CAS  Google Scholar 

  33. Jang SS, Goddard WA (2006) Structures and properties of Newton black films characterized using molecular dynamics simulations. J Phys Chem B 110:7992–8001

    Article  CAS  Google Scholar 

  34. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J Phys Chem A 105:9954–9960

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant No. 21173154) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors are grateful to College of Computer Science & Technology in Soochow University for providing amounts of computer facilities assignment on its high-powered computers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Fen Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 27 kb)

Table S2

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cen, M., Fan, J.F., Liu, D.Y. et al. Cyclo-hexa-peptides at the water/cyclohexane interface: a molecular dynamics simulation. J Mol Model 19, 601–611 (2013). https://doi.org/10.1007/s00894-012-1588-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1588-8

Keywords

Navigation