Skip to main content
Log in

A DFT study on the initial stage of thermal degradation of Poly(methyl methacrylate)/carbon nanotube system

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

DFT calculations, with VWN exchange correlation functional and double numeric basis set, were used to evaluate the energies required for the scission reactions taking place in the initial stage of the thermal degradation of Poly(methyl methacrylate) (PMMA) in the presence of a carbon nanotube (CNT). Side group and main chain scissions were investigated. The results averaged from five configurations of pure PMMA (DP = 5) were used as references and compared to the results obtained for the five same configurations of PMMA grafted on three carbon nanotubes of similar diameter (1.49 nm). The bond dissociation energies (BDE) of main chain scission evaluated for grafted PMMA was 4 % less endothermic than for pure PMMA. These results seemed independent of the tested chirality (11,11); (12,10) and (16,5) of the carbon nanotubes. Comparisons with the BDE of the weakest bonds due to intrinsic defaults (head to head and unsaturated end chain) were performed.

Representation of PMMA radical oligomer and grafted carbon nanotube 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu SY, Hamerton I (2002) Prog Polym Sci 27:1661–1712

    Article  CAS  Google Scholar 

  2. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) Mater Sci Eng R 63:100–125

    Article  Google Scholar 

  3. Weil ED (2011) J Fire Sci 29:259–296

    Article  CAS  Google Scholar 

  4. Shaw SD, Blum A, Weber R, Kannan K, Ritch D, Lucas D, Koshland CP, Dobraca D, Hanson S, Birnbaum LS (2010) Rev Environ Health 25:261–305

    Article  CAS  Google Scholar 

  5. Levchik SV, Weil ED (2006) J Fire Sci 24:345–364

    Article  CAS  Google Scholar 

  6. Kashiwagi T, Gilman JW (2000) Silicon-based flame retardants. In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials. Dekker, New York, pp 353–389

    Google Scholar 

  7. Hollingbery LA, Hull TR (2010) Polym Degrad Stab 95:2213–2225

    Article  CAS  Google Scholar 

  8. Lewin M (2001) Polym Adv Technol 12:215–222

    Article  CAS  Google Scholar 

  9. Ma HY, Song PA, Fang ZP (2011) Sci China Chem 54:302–313

    Article  CAS  Google Scholar 

  10. Isitman NA, Kaynak C (2010) Polym Degrad Stab 95:1523–1532

    Article  CAS  Google Scholar 

  11. Lu H, Wilkie C (2010) Polym Degrad Stab 95:564–571

    Article  CAS  Google Scholar 

  12. Peeterbroeck S, Laoutid F, Swoboda B, Lopez-Cuesta JM, Moreau N, Nagy JB, Alexandre M, Dubois P (2007) Macromol Rapid Commun 28:260–264

    Article  CAS  Google Scholar 

  13. Cipiriano BH, Kashiwagi T, Raghavan SR, Yang Y, Grulke EA, Yamamoto K, Shields JR, Douglas JF (2007) Polymer 48:6086–6096

    Article  CAS  Google Scholar 

  14. Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA (2006) Polym Adv Technol 17:272–280

    Article  CAS  Google Scholar 

  15. Chivas-Joly C, Guillaume E, Ducourtieux S, Saragoza L, Lopez-Cuesta JM, Longuet C, Duplantier S, Bertrand J, Calogine D, Minisini B (2010) Influence of carbon nanotubes on fire behavior and on decomposition products of thermoplastic polymers. In: Grayson S (ed) Interflam 2010: Proceedings of the 12th international conference, 5–7 July 2010, Interscience communications, p 95–106

  16. Motzkus C, Chivas-Joly C, Guillaume E, Ducourtieux S, Saragoza L, Lesenechal D, Macé T, Lopez-Cuesta JM, Longuet C (2012) J Nanoparticle Res 14:1–17

    Article  Google Scholar 

  17. Quach Y, Cinausero N, Sonnier R, Longuet C, Lopez-Cuesta JM (2012) Barrier effect of flame retardant systems in poly(methyl methacrylate): study of the efficiency of the surface treatment by octylsilane of silica nanoparticles in combination with phosphorous fire retardant additives. Fire Mater doi:10.1002/fam.1119

  18. Kashiwagi T, Fagan J, Douglas JF, Yamamoto K, Heckert AN, Leigh SD, Obrzut J, Du F, Lin-Gibson S, Mu M, Winey KI, Haggenmueller R (2007) Polymer 48:4855–4866

    Article  CAS  Google Scholar 

  19. Kashiwagi T, Mu M, Winey K, Cipriano B, Raghavan SR, Pack S, Rafailovich M, Yang Y, Grulke E, Shields J, Harris R, Douglas J (2008) Polymer 49:4358–4368

    Article  CAS  Google Scholar 

  20. Liu J, Rasheed A, Minus ML, Kumar S (2009) J Appl Polym Sci 112:142–156

    Article  CAS  Google Scholar 

  21. Zeng WR, Li SF, Chow WK (2002) J Fire Sci 20:401–433

    Article  CAS  Google Scholar 

  22. Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Macromol Rapid Commun 23:761–765

    Article  CAS  Google Scholar 

  23. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Mater Sci Eng, A 271:395–400

    Article  Google Scholar 

  24. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2003) Macromol Rapid Commun 24:1070–1073

    Article  CAS  Google Scholar 

  25. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  26. Banerjee S, Hemraj-Benny T (2005) Adv Mater 1:17–29

    Article  Google Scholar 

  27. Laachachi A, Ferriol M, Cochez M, Ruch D, Lopez-Cuesta JM (2008) Polym Degrad Stab 93:1131–1137

    Article  CAS  Google Scholar 

  28. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, Chapter 21

    Google Scholar 

  29. Abate L, Blanco I, Orestano A, Pollicino A, Recca A (2003) Polym Degrad Stab 80:333–338

    Article  CAS  Google Scholar 

  30. Walters RN, Hackett SM, Lyon RR (2000) Fire Mater 24:245–252

    Article  CAS  Google Scholar 

  31. Staggs JEJ (2004) Fire Saf J 39:711–720

    Article  CAS  Google Scholar 

  32. www.accelrys.com

  33. Sun H (1998) J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  34. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  35. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  36. Rafii-Tabar H (2004) Phys Rep 390:235–452

    Article  CAS  Google Scholar 

  37. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  38. Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138

    Google Scholar 

  39. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  40. Stoliarov SI, Westmoreland PR, Nyden MR, Forney GP (2003) Polymer 44:883–894

    Article  CAS  Google Scholar 

  41. Conforti PF, Garrison BJ (2005) Chem Phys Lett 409:294–299

    Article  Google Scholar 

  42. Stauffer E (2003) Sci Justice 43:29–40

    Article  CAS  Google Scholar 

  43. Kashiwagi TT, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E (1986) Macromolecules 19:2160–2168

    Article  CAS  Google Scholar 

  44. Inaba A, Kashiwagi T, Brown EJ (1988) Polym Degrad Stab 21:1–20

    Article  CAS  Google Scholar 

  45. Kashiwagi T, Inaba A (1989) Polym Degrad Stab 26:161–184

    Article  CAS  Google Scholar 

  46. Manring L (1991) Macromolecules 24:3304–3309

    Article  CAS  Google Scholar 

  47. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski JL (2002) Polym Degrad Stab 79:271–281

    Article  Google Scholar 

  48. Holland BJ, Hay JN (2001) Polymer 42:4825–4835

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank ANR “Agence Nationale de la Recherche” for its sponsorship to the NANOFEU project (2008–2011) and partners (Institut National de l’Environnement Industriel et des Risques (INERIS), Laboratoire National de Métrologie et d’Essais (LNE), Ecole des Mines d’Alès (EMA), and PlasticsEurope). B. Minisini thanks particularly Grégoire Thiery and Bruno Stefani for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Minisini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minisini, B., Vathonne, E., Chivas-Joly, C. et al. A DFT study on the initial stage of thermal degradation of Poly(methyl methacrylate)/carbon nanotube system. J Mol Model 19, 623–629 (2013). https://doi.org/10.1007/s00894-012-1584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1584-z

Keywords

Navigation