Skip to main content
Log in

Performance comparison of computational methods for modeling alpha-helical structures

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Geometry optimization results are reported for secondary structural elements of small proteins and polypeptides. Emphasis is placed on how well molecular mechanics as well as semiempirical, ab initio, and density functional methods describe α-helical and related structures in purely theoretical models (Gly10, Ile10) as well as in realistic models (an α-helical region of calmodulin, and the complete structure of a small protein). Many of the methods examined here were found to provide unsatisfactory descriptions of the hydrogen-bonding interactions within polypeptide-type structures, as the α-helical canonical secondary structure motif was not reproduced accurately. Ab initio and DFT methods provided reasonable results only when solvation models were included, although Hartree–Fock failed even with solvation in one of the test cases; among the semiempirical methods, one of the PM6 implementations performed very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Noodleman L, Lovell T, Han WG, Li J, Himo F (2004) Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem Rev 104:459–508

    Article  CAS  Google Scholar 

  2. Siegbahn PE, Blomberg MRA (2000) Transition-metal systems in biochemistry studied by high-accuracy quantum chemical methods. Chem Rev 100:421–437

    Article  CAS  Google Scholar 

  3. Harris DL (2001) High-valent intermediates of heme proteins and model compounds. Curr Opin Chem Biol 5:724–735

    Article  CAS  Google Scholar 

  4. Friesner RA, Dunietz BD (2001) Large-scale ab initio quantum chemical calculations on biological systems. Acc Chem Res 34:351–358

    Google Scholar 

  5. Gooding SR, Winn PJ, Jones GA, Ferenczy GG, Frusher MJ, Reynolds CA (2006) Classical polarization in hybrid QM/MM methods. J Phys Chem A 110:6487–6497

    Article  Google Scholar 

  6. Warshel A, Parson WW (2001) Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q Rev Biophys 34:563–679

    Article  CAS  Google Scholar 

  7. Warshel A (2002) Molecular dynamics simulations of biological reactions. Acc Chem Res 35:385–395

    Article  CAS  Google Scholar 

  8. Rosta E, Klahn M, Warshel A (2006) Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions. J Phys Chem B 110:2934–2941

    Google Scholar 

  9. Ryde U (2003) Combined quantum and molecular mechanics calculations on metalloproteins. Curr Opin Chem Biol 7:136–142

    Article  CAS  Google Scholar 

  10. Silaghi-Dumitrescu R (2004) On the performance of the PM3 semiempirical method with heme complexes relevant to dioxygen and peroxide activation. Rev Chim 55:304–307

    CAS  Google Scholar 

  11. Tejero I, Gonzalez-Lafont A, Lluch JM (2007) A PM3/d specific reaction parameterization for iron atom in the hydrogen abstraction catalyzed by soybean lipoxygenase-1. J Comput Chem 28:997–1005

    Article  CAS  Google Scholar 

  12. Mcnamara JP, Sundararajan M, Hillier IH, Ge J, Campbell A, Morgado C (2006) Can the semiempirical PM3 scheme describe iron-containing bioinorganic molecules? J Comput Chem 27:1307–1323

    Article  CAS  Google Scholar 

  13. Mcnamara JP, Sundararajan M, Hillier IH (2005) Development of parameter sets for semi-empirical MO calculations of transition metal systems: iron parameters for iron–sulfur proteins. J Mol Graph Model 24:128–137

    Google Scholar 

  14. Csontos J, Palermo NY, Murphy RF, Lovas S (2008) Calculation of weakly polar interaction energies in polypeptides using density functional and local Moller–Plesset perturbation theory. J Comput Chem 29:1344–1352

    Google Scholar 

  15. Sulpizi M, Raugei S, Vandevondele J, Carloni P, Sprik M (2007) Calculation of redox properties: understanding short- and long-range effects in rubredoxin. J Phys Chem B 111:3969–3976

    Article  CAS  Google Scholar 

  16. Jensen KP (2006) Iron–sulfur clusters: why iron? J Inorg Biochem 100:1436–1439

    Google Scholar 

  17. Sundararajan M, Hillier IH, Burton NA (2006) Structure and redox properties of the protein, rubredoxin, and its ligand and metal mutants studied by electronic structure calculation. J Phys Chem A 110:785–790

    Article  CAS  Google Scholar 

  18. Machonkin TE, Westler WM, Markley JL (2005) Paramagnetic NMR spectroscopy and density functional calculations in the analysis of the geometric and electronic structures of iron–sulfur proteins. Inorg Chem 44:779–797

    Google Scholar 

  19. Vrajmasu VV, Munck E, Bominaar EL (2004) Theoretical analysis of the three-dimensional structure of tetrathiolato iron complexes. Inorg Chem 43:4867–4879

    Article  CAS  Google Scholar 

  20. Kennepohl P, Solomon EI (2003) Electronic structure contributions to electron-transfer reactivity in iron–sulfur active sites: 3. Kinetics of electron transfer. Inorg Chem 42:696–708

    Google Scholar 

  21. Vrajmasu VV, Bominaar EL, Meyer J, Munck E (2002) Mossbauer study of reduced rubredoxin as purified and in whole cells. Structural correlation analysis of spin Hamiltonian parameters. Inorg Chem 41:6358–6371

    Article  CAS  Google Scholar 

  22. Glaser T, Rose K, Shadle SE, Hedman B, Hodgson KO, Solomon EI (2001) S K-edge X-ray absorption studies of tetranuclear iron–sulfur clusters: mu-sulfide bonding and its contribution to electron delocalization. J Am Chem Soc 123:442–454

    Google Scholar 

  23. Sigfridsson E, Olsson MH, Ryde U (2001) Inner-sphere reorganization energy of iron–sulfur clusters studied with theoretical methods. Inorg Chem 40:2509–2519

    Article  CAS  Google Scholar 

  24. Kloiber K, Weiskirchen R, Krautler B, Bister K, Konrat R (1999) Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. J Mol Biol 292:893–908

    Article  CAS  Google Scholar 

  25. Nayal M, Di Cera E (1996) Valence screening of water in protein crystals reveals potential Na+ binding sites. J Mol Biol 256:228–234

    Google Scholar 

  26. Rossi M, Blum V, Kupser P, Helden V, Bierau F, Pagel K, Meijer G, Scheffler M (2010) Secondary structure of Ac-Ala n -LysH+ polyalanine peptides (n = 5, 10, 15) in vacuo: helical or not? J Phys Chem Lett 1:3465–3470

    Google Scholar 

  27. Hua S, Xu L, Li S (2011) Cooperativity in long α- and 310-helical polyalanines: both electrostatic and van der Waals interactions are essential. J Phys Chem B 115:11462–11469

    Google Scholar 

  28. Tkatchenko A, Rossi M, Blum V, Ireta J, Scheffler M (2011) Unraveling the stability of polypeptide helices: critical role of van der Waals interactions. Phys Rev Lett 106:118102

    Google Scholar 

  29. Wavefunction, Inc. (1998)Spartan 5.0, Wavefunction, Inc., Irvine

  30. Frisch MJ, Trucks GW, H. B. Schlegel HB, Scuseria GE, Robb, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery, Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

  31. Hypercube, Inc. (2007) HyperChem molecular modelling system, release 8.0 for Windows. Hypercube, Inc.

  32. Stewart JJP (2009) MOPAC2009, version 10.153L. Stewart Computational Chemistry, Colorado Springs

  33. Eckert F, Klamt A (2002) COSMO solvation model. AICHE J 48:369–385

    Article  CAS  Google Scholar 

  34. Kudin KN, Scuseria GE, Cancès E (2002) A black-box self-consistent field convergence algorithm: one step closer. J Chem Phys 116:8255–8261

    Article  CAS  Google Scholar 

  35. Kun ZA, Lupan A, Silaghi-Dumitrescu R (2010) PM6 modeling of alpha helical polypeptide structures. Studia Universitatis Babes-Bolyai Chemia 55:31–36

    Google Scholar 

  36. Korth M, Pitonak M, Rezac J, Hobza P (2010) A transferable H-bonding correction for semiempirical quantum-chemical methods. J Chem Theor Comput 6:344–352

    Article  CAS  Google Scholar 

  37. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

  38. Baker J (1986) An algorithm for the location of transition states. J Comput Chem 7:385–395

    Article  CAS  Google Scholar 

  39. Davidon WC (1991) Variable metric method for minimization. SIAM J Optim 1:1–17

    Article  Google Scholar 

  40. Fletcher R (1987) Practical methods of optimization, 2nd edn. Wiley, New York

  41. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms. II. The new algorithm. J Inst Math Appl 6:222–231

    Google Scholar 

  42. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322

    Article  Google Scholar 

  43. Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24:23–26

    Article  Google Scholar 

  44. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656

    Article  Google Scholar 

  45. Matthies H, Strang G (1979) The solution of nonlinear finite element equations. Int J Num Meth Eng 14:1613–1626

    Article  Google Scholar 

  46. Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput 35:773–782

    Article  Google Scholar 

  47. Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-Newton matrices and their use in limited memory methods. Math Prog 63:129–156

    Article  Google Scholar 

  48. Babu YS, Bugg CE, Cook WJ (1988) Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204:191–204

    Google Scholar 

  49. Nordhoff A, Tziatzios C, Van Den Broek JA, Schott MK, Kalbitzer HR, Becker K, Schubert D, Schirmer RH (1997) Solution structure of an HGR inhibitor. Eur J Biochem 245:273–282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Romanian Ministry of Education and Research (grants PN II 312/2008 and Parteneriate 72168/2008-FLUORODENT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radu Silaghi-Dumitrescu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 4124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupan, A., Kun, AZ., Carrascoza, F. et al. Performance comparison of computational methods for modeling alpha-helical structures. J Mol Model 19, 193–203 (2013). https://doi.org/10.1007/s00894-012-1531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1531-z

Keywords

Navigation