Skip to main content

Advertisement

Log in

A DFT study on the mechanisms for the cycloaddition reactions between 1−aza-2-azoniaallene cations and acetylenes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanisms of cycloaddition reactions between 1-aza-2-azoniaallene cations 1 and acetylenes 2 have been investigated using the global electrophilicity and nucleophilicity of the corresponding reactants as global reactivity indexes defined within the conceptual density functional theory. The reactivity and regioselectivity of these reactions were predicted by analysis of the energies, geometries, and electronic nature of the transition state structures. The theoretical results revealed that the reaction features a tandem process: an ionic 1,3-dipolar cycloaddition to produce the cycloadducts 3 H-pyrazolium salts 3 followed by a [1,2]-shift affording the thermodynamically more stable adducts 4 or 5. The mechanism of the cycloaddition reactions can be described as an asynchronous concerted pathway with reverse electron demand. The model reaction has also been investigated at the QCISD/6-31++G(d,p) and CCSD(T)/6-31++G(d,p)//B3LYP/6-31++G(d,p) levels as well as by the DFT. The polarizable continuum model, at the B3LYP/6-31++G(d,p) level of theory, was used to study solvent effects on all the studied reactions. In solvent dichloromethane, all the initial cycloadducts 3 were obtained via direct ionic process as the result of the solvent effect. The consecutive [1,2]-shift reaction, in which intermediates 3 are rearranged to the five-membered heterocycles 4/5, is proved to be a kinetically controlled reaction, and the regioselectivity can be modulated by varying the migrant. The LOL function and RDG function based on localized electron analysis were used to analysis the covalent bond and noncovalent interactions in order to unravel the mechanism of the title reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

B3LYP:

Becke-3-parameter-Lee-Yang-Parr

QCISD:

Quadratic configuration interaction using single and double substitutions

CCSD(T):

Coupled cluster calculations with single and double excitations and a perturbative estimate of triple contributions

DFT:

Density functional theory

PCM:

Polarized continuum model

IRC:

Intrinsic reaction coordinate

NBO:

Natural bond orbital

LOL:

Localized orbital locator

RDG:

Reduced density gradient

AM1:

Austin model 1

References

  1. Huisgen R (1963) 1,3-Dipolar cycloadditions. Past and future. Angew Chem Int Edit 2(10):565–598

    Article  Google Scholar 

  2. Padwa A, Pearson WH (2002) Synthetic applications of 1,3 dipolar cycloaddition chemistry toward heterocycles and natural products. Wiley, New York

    Book  Google Scholar 

  3. Moura NMM, Giuntini F, Faustino MAF, Neves M, Tome AC, Silva AMS, Rakib EM, Hannioui A, Abouricha S, Roder B, Cavaleiro JAS (2010) 1,3-Dipolar cycloaddition of nitrile imines to meso-tetraarylporphyrins. ARKIVOC (Part 5):24-33

  4. Song Z, He XP, Jin XP, Gao LX, Sheng L, Zhou YB, Li J, Chen GR (2011) ‘Click’ to bidentate bis-triazolyl sugar derivatives with promising biological and optical features. Tetrahedron Lett 52(8):894–898

    Article  CAS  Google Scholar 

  5. Cases M, Duran M, Sole M (2000) The [2 + 1] cycloaddition of singlet oxycarbonylnitrenes to C 60. J Mol Model 6(2):205–212. doi:10.1007/s0089400060205

    Article  CAS  Google Scholar 

  6. Kuznetsov ML, Kukushkin VY, Dement’Ev AI, Pombeiro AJL (2003) 1,3-dipolar cycloaddition of nitrones to free and Pt-bound nitriles. A theoretical study of the activation effect, reactivity, and mechanism. J Phys Chem A 107(31):6108–6120

    Article  CAS  Google Scholar 

  7. Meng LP, Wang SC, Fettinger JC, Kurth MJ, Tantillo DJ (2009) Controlling selectivity for cycloadditions of nitrones and alkenes tethered by benzimidazoles: combining experiment and theory G-3263-2010. Eur J Org Chem 2009(10):1578–1584

    Article  Google Scholar 

  8. Saeed A, Al-Masoudi NA, Ahmed AA, Pannecouque C (2011) New substituted thiazol-2-ylidene-benzamides and their reaction with 1-Aza-2-azoniaallene salts. Synthesis and anti-HIV activity. Z Naturforsch 66(5):512–520

    Article  CAS  Google Scholar 

  9. Weingarten MD, Prein M, Price AT, Snyder JP, Padwa A (1997) Theoretical insights regarding the cycloaddition behavior of push-pull stabilized carbonyl ylides. J Org Chem 62(7):2001–2010

    Article  CAS  Google Scholar 

  10. Kuznetsov ML (2006) Theoretical studies of [3 + 2]-cycloaddition reactions. USPEKHI KHIMII 75(11):1045–1073

    Google Scholar 

  11. Gaich T, Baran PS (2010) Aiming for the ideal synthesis. J Org Chem 75(14):4657–4673

    Article  CAS  Google Scholar 

  12. Meng Q, Li M (2012) Theoretical studies on the Mo-catalyzed asymmetric intramolecular Pauson-Khand-type [2 + 2 + 1] cycloadditions of 3-allyloxy-1-propynylphosphonates. J Mol Model doi:10.1007/s00894-012-1361-z

  13. Houk KN, Firestone RA, Munchausen LL, Mueller PH, Arison BH, Garcia LA (1985) stereospecificity of 1,3-dipolar cyclo-additions of para-nitrobenzonitrile oxide to cis-dideuterioethylene and trans-dideuterioethylene. J Am Chem Soc 107(24):7227–7228

    Article  CAS  Google Scholar 

  14. Di Valentin C, Freccero M, Gandolfi R, Rastelli A (2000) Concerted vs stepwise mechanism in 1,3-dipolar cycloaddition of nitrone to ethene, cyclobutadiene, and benzocyclobutadiene: a computational study. J Org Chem 65(19):6112–6120

    Article  Google Scholar 

  15. Ponti A, Molteni G (2001) DFT-based quantitative prediction of regioselectivity: cycloaddition of nitrilimines to methyl propiolate. J Org Chem 66(15):5252–5255

    Article  CAS  Google Scholar 

  16. Wang QR, Jochims JC, Kohlbrandt S, Dahlenburg L, Altalib M, Hamed A, Ismail AEH (1992) 1,2,4-triazolium salts from the reaction of 1-aza-2-azoniaallene salts with nitriles. Synth Stuttgart 24(7):710–718

    Article  Google Scholar 

  17. Wirschun W, Winkler M, Lutz K, Jochims JC (1998) 1,3-diaza-2-azoniaallene salts: cycloadditions to alkynes, carbodiimides and cyanamides. J Chem Soc Perk T 1(11):1755–1761

    Google Scholar 

  18. Li ZM, Wang QR (2008) A theoretical investigation on the cycloaddition reaction between azocarbenium ions and nitriles. Int J Quantum Chem 108(6):1067–1075

    Article  CAS  Google Scholar 

  19. Wirschun W, Jochims JC (1997) 1,3-diaza-2-azoniaallene salts, novel N-3-building blocks: Preparation and cycloadditions to olefins. Synth Stuttgart 29(2):233–241

    Article  Google Scholar 

  20. Wei MJ, Fang DC, Liu RZ (2002) Theoretical studies on cycloaddition reactions between 1-aza-2-azoniaallene cation and olefins. J Org Chem 67(21):7432–7438

    Article  CAS  Google Scholar 

  21. Abuelhalawa R, Jochims JC (1992) on the reaction of n-alkylnitrilium salts with acetylenes - a new synthesis of 2-azoniaallene salts. Synth Stuttgart 24(9):871–874

    Article  Google Scholar 

  22. Wang QR, Altalib M, Jochims JC (1994) On the reaction of 1-aza-2-azoniaallene salts with acetylenes. Chem Ber 127(3):541–547

    Article  CAS  Google Scholar 

  23. Wang QR, Amer A, Troll C, Fischer H, Jochims JC (1993) On the reaction of 1-aza-2-azoniaallene salts with carbodiimides. Chem Ber 126(11):2519–2524

    Article  CAS  Google Scholar 

  24. Wang JM, Li ZM, Wang QR, Tao FG (2012) A DFT study on the mechanisms for the cycloaddition reactions between 1-Aza-2-azoniaallene cations and carbodiimides. Int J Quantum Chem 112(3):809–822. doi:10.1002/qua.23065

    Article  CAS  Google Scholar 

  25. Wang QR, Mohr S, Jochims JC (1994) On the reaction of 1-aza-2-azoniaallene salts with isocyanates. Chem Ber 127(5):947–953

    Article  CAS  Google Scholar 

  26. Wei MJ, Fang DC, Liu RZ (2004) Theoretical studies on cycloaddition reactions between 1-aza-2-azoniaallene cations and isocyanates. Eur J Org Chem 2004(19):4070–4076

    Article  Google Scholar 

  27. Wyman J, Javed MI, Al-Bataineh N, Brewer M (2010) Synthetic approaches to bicyclic diazenium salts. J Org Chem 75(23):8078–8087

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, A.02nd edn. Gaussian Inc, Wallingford

    Google Scholar 

  29. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction-path following. J Chem Phys 90(4):2154–2161

    Article  CAS  Google Scholar 

  30. Gonzalez C, Schlegel HB (1990) Reaction-path following in mass-weighted internal coordinates. J Org Chem 94(14):5523–5527

    CAS  Google Scholar 

  31. Gauss J, Cremer D (1988) Analytical evaluation of energy gradients in quadratic configuration interaction theory. Chem Phys Lett 150(3–4):280–286. doi:10.1016/0009-2614(88)80042-3

    Article  CAS  Google Scholar 

  32. Salter EA, Trucks GW, Bartlett RJ (1989) Analytic energy derivatives in many-body methods. I. First derivatives. J Chem Phys 90(3):1752–1766

    Article  Google Scholar 

  33. Watts JD, Gauss J, Bartlett RJ (1992) Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT(4), CCSD + T(CCSD), CCSD(T), and QCISD(T). Chem Phys Lett 200(1–2):1–7. doi:10.1016/0009-2614(92)87036-o

    Article  CAS  Google Scholar 

  34. Scuseria GE (1991) Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: theory and applications to FOOF and Cr[sub 2]. J Chem Phys 94(1):442–447

    Article  CAS  Google Scholar 

  35. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum - a direct utilization of abinitio molecular potentials for the prevision of solvent effects. Chem Phys 55(1):117–129

    Article  CAS  Google Scholar 

  36. Barone V, Cossi M, Tomasi J (1997) A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J Chem Phys 107(8):3210–3221

    Article  CAS  Google Scholar 

  37. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107(8):3032–3041

    Article  CAS  Google Scholar 

  38. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Ab initio study of ionic solutions by a polarizable continuum dielectric model. Chem Phys Lett 286(3–4):253–260

    Article  CAS  Google Scholar 

  39. Perez P (2004) Relationship between superelectrophilicity and the electrophilicity index of isolated species. J Org Chem 69(15):5048–5053. doi:10.1021/jo049945f

    Article  CAS  Google Scholar 

  40. Noorizadeh S, Shakerzadeh E (2008) A new scale of electronegativity based on electrophilicity index. J Phys Chem A 112(15):3486–3491. doi:10.1021/jp709877h

    Article  CAS  Google Scholar 

  41. Chattaraj PK, Giri S, Duley S (2011) Update 2 of: electrophilicity index. Chem Rev 111(2):PR43–PR75. doi:10.1021/cr100149p

    Article  Google Scholar 

  42. Chattaraj PK, Duley S, Domingo LR (2012) Understanding local electrophilicity/nucleophilicity activation through a single reactivity difference index. Org Biomol Chem 10(14):2855–2861. doi:10.1039/c2ob06943a

    Article  CAS  Google Scholar 

  43. Domingo LR, Chamorro E, Perez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions: a theoretical study. J Org Chem 73(12):4615–4624. doi:10.1021/jo800572a

    Article  CAS  Google Scholar 

  44. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F, Morales M, Weinhold F (2010) NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  45. Yin B, Huang Y, Wang G, Wang Y (2010) Combined DFT and NBO study on the electronic basis of Si···N-β-donor bond. J Mol Model 16(3):437–446. doi:10.1007/s00894-009-0560-8

    Article  CAS  Google Scholar 

  46. Davari M, Bahrami H, Haghighi Z, Zahedi M (2010) Quantum chemical investigation of intramolecular thione-thiol tautomerism of 1,2,4-triazole-3-thione and its disubstituted derivatives. J Mol Model 16(5):841–855. doi:10.1007/s00894-009-0585-z

    Article  CAS  Google Scholar 

  47. Jacobsen H (2008) Localized-orbital locator (LOL) profiles of chemical bonding. Can J Chem 86(7):695–702

    Article  CAS  Google Scholar 

  48. Jacobsen H (2009) Chemical bonding in view of electron charge density and kinetic energy density descriptors. J Comput Chem 30(7):1093–1102. doi:10.1002/jcc.21135

    Article  CAS  Google Scholar 

  49. Yang Y (2010) Hexacoordinate bonding and aromaticity in silicon phthalocyanine. J Phys Chem A 114(50):13257–13267. doi:10.1021/jp109278v

    Article  CAS  Google Scholar 

  50. Steinmann SN, Mo Y, Corminboeuf C (2011) How do electron localization functions describe pi-electron delocalization? Phys Chem Chem Phys 13(46):20584–20592. doi:10.1039/c1cp21055f

    Article  CAS  Google Scholar 

  51. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506. doi:10.1021/ja100936w

    Article  CAS  Google Scholar 

  52. Lu T (2011) Multiwfn 2.21. School of Chemical and Biological Engineering. University of Science and Technology Beijing, China

    Google Scholar 

  53. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88(6):899–926. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  54. Sustmann R (1971) A simple model for substituent effects in cycloaddition reactions. II. The diels-alder reaction. Tetrahedron Lett 12(29):2721–2724. doi:10.1016/s0040-4039(01)96962-x

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the assistance of other members of Professor Quan-rui Wang's group for obtaining experimental information. This work was supported by the National Natural Science Foundation of China (No. 21102019) and the Science Fund for Distinguished Young Scholars at Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ming Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 47.1 kb)

ESM 2

(PDF 1.14 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Jm., Li, Zm., Wang, Qr. et al. A DFT study on the mechanisms for the cycloaddition reactions between 1−aza-2-azoniaallene cations and acetylenes. J Mol Model 19, 83–95 (2013). https://doi.org/10.1007/s00894-012-1521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1521-1

Keywords

Navigation