Skip to main content

Advertisement

Log in

Theoretical investigations on the structure, density, thermodynamic and performance properties of amino-, methyl-, nitroso- and nitrotriazolones

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have studied herein the effect of position and the number of -NO, -NO2, -NH2 and -CH3 groups on the structure, stability, impact sensitivity, density, thermodynamic and detonation properties of triazolones by performing density functional theory calculations at the B3LYP/aug-cc-pVDZ level. The optimized structures, vibrational frequencies and thermodynamic values for triazolones have been obtained in their ground state. Kamlet-Jacob equations were used to calculate the detonation velocity and detonation pressure of model compounds. The detonation properties of NNTO (D 8.75 to 9.10 km/s, P 34.0 to 37.57 GPa), DNTO (D 8.80 to 9.05 km/s, P 35.55 to 38.27 GPa), ADNTO (D 9.01 to 9.42 km/s and P 37.81 to 41.10 GPa) and ANNTO (D 8.58 to 9.0 km/s, P 30.81 to 36.25 GPa) are compared with those of 1,3,5-trinitro-1,3,5-triazine (RDX) (D 8.75 km/s, P 34.70 Gpa) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (D 8.96 km/s, P 35.96 GPa). The designed compounds satisfy the criteria of high energy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Larina L, Lopyrev L (2009) Nitroazoles: synthesis, structure and applications. Springer, New York

    Book  Google Scholar 

  2. Lee KY, Stinecipher Mn (1989) Prop Explos Pyretech 14:241–244

    Article  CAS  Google Scholar 

  3. Lee KY, Chapman LB, Coburn MDv (1987) J Energ Mater 5:27–33

    Article  CAS  Google Scholar 

  4. Ritchie JP (1989) J Org Chem 54:3553–3560

    Article  CAS  Google Scholar 

  5. Williams GK, Brill TBv (1995) J Phys Chem 99:12536–12539

    Article  CAS  Google Scholar 

  6. Manchot VW, Noll R (1905) J Liebigs Ann der Chem 343:1–27

    Article  Google Scholar 

  7. Lee KY, Coburn MD (1985) 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive (LA10302- MS). Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  8. Smith MW, Cliff MD (1999) NTO based explosive formulations: a technology review (DSTO-TR-0796), MRL Technical Report, AR-1-873. Material Research Laboratory, Maribyrnong

    Google Scholar 

  9. Lee KY, Stinecipher MM (1983) United States Patent 5:256,792

    Google Scholar 

  10. Haixia M, Jirong S, Xiaohong S, Rongzu H, Shengli G, Kaibei Y (2002) Thermochim Acta 389:43–47

    Article  Google Scholar 

  11. Cromer DT, Hall JH, Lee KY, Ryan RR (1988) Acta Cryst 44:1144–1147

    Google Scholar 

  12. Cromer DT, Hall JH, Lee KY, Ryan RR (1988) Acta Cryst 44:2206–2208

    Google Scholar 

  13. Hiskey MA, Stinecipher MM, Brown JE (1993) J Energ Mater 11:157–165

    Article  CAS  Google Scholar 

  14. Yi X, Rongzu H, Chaoqing Y, Guofu F, Jihua Z (1992) Prop Explos Pyretech 17:298–302

    Article  Google Scholar 

  15. Jiarong L, Boren C, Yuxiang O, Neijue Z (1991) Prop Explos Pyretech 16:145–146

    Article  Google Scholar 

  16. Cheng Wei C, Yeong-Ming W, Te-Chuan C, Cheng C (1997) Prop Explos Pyretech 22:240–241

    Article  Google Scholar 

  17. Redman LD, Spear RJ (1989) An evaluation of metal Salts of 3-nitro-1,2,4-triazol-5-one (NTO) as potential primary explosives, MRL-TN-563. Materials Research Laboratory, Melbourne

    Google Scholar 

  18. Owens FJ (1996) J Mol Struct (Theochem) 370:11–16

    Article  CAS  Google Scholar 

  19. Kohno Y, Takahashi O, Saito K (2001) Phys Chem Chem Phys 3:2742–2746

    Article  CAS  Google Scholar 

  20. Hiyoshi RI, Kohno Y, Nakamura J (2004) J Phys Chem A 108:5915–5920

    Article  CAS  Google Scholar 

  21. Ma HM, Song JR, Dong W, Hu RZ, Zhai GH, Wen ZY (2004) J Mol Struct (Theochem) 678:217–222

    Article  CAS  Google Scholar 

  22. Singh G, Felix SP (2003) J Mol Struct 649:71–83

    Article  CAS  Google Scholar 

  23. Harris NJ, Lamnestsma K (1996) J Am Chem Soc 118:8048–8055

    Article  CAS  Google Scholar 

  24. Turker L, Atalar T (2006) J Hazar Mater A 137:1333–1344

    Article  Google Scholar 

  25. Turker L, Bayer C (2012) J Energ Mater 30:72–96

    Article  Google Scholar 

  26. Klene M, Li X, Knox J, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.04. Gaussian Inc, Pittsburgh

    Google Scholar 

  27. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  28. Parr RG, Yang W (1989) Density Functional Theory of Atoms and Molecules. Oxford University Press, London

    Google Scholar 

  29. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  30. Vosko SH, Vilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  32. Njegic B, Gordon MS (2006) J Chem Phys 125:2241021–22410112

    Article  Google Scholar 

  33. Materials Studio 4.1 (2004) Accelrys Inc, San Diego, CA

  34. Kamlet MJ, Jacobs SJ (1968) J Chem Phys 48:23–35

    Article  CAS  Google Scholar 

  35. Akhavan J (1998) Chemistry of explosives. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  36. Zhang C, Shu Y, Huang Y, Zhao X, Dong H (2005) J Phys Chem B 109:8978–8982

    Article  CAS  Google Scholar 

  37. Zhang C (2009) J Hazard Mater 161:21–28

    Article  CAS  Google Scholar 

  38. Zhang C, Shu Y, Wang X, Zhao X, Tan B, Peng R (2005) J Phys Chem A 109:6592–6596

    Article  CAS  Google Scholar 

  39. Zhang C, Shu Y, Huang Y, Wang X (2005) J Energ Mater 23:107–119

    Article  Google Scholar 

  40. Fukui F, Yonezawa T, Shingu H (1952) J Chem Phys 20:722–725

    Article  CAS  Google Scholar 

  41. Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720–5724

    Article  CAS  Google Scholar 

  42. Pearson RG (1989) J Org Chem 54:423–1430

    Google Scholar 

  43. Ravi P, Gore GM, Venkatesan V, Tewari SP, Sikder AK (2010) J Hazard Mater 183:859–865

    Article  CAS  Google Scholar 

  44. Pinkerton AA, Zhuorva EA, Chen YS (2003) In: Politzer P, Murray JS (eds) Energetic Materials. Theoretical and Computational Chemistry Series. Elsevier, New York

    Google Scholar 

  45. Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, New York

    Google Scholar 

  46. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  47. Klapötke TM, Mayer P, Schulz A, Weigand JJ (2005) J Am Chem Soc 127:2032–2033

    Article  Google Scholar 

  48. Cho SG, Goh EM, Kim JK (2001) Bull Korean Chem Soc 22:775–778

    CAS  Google Scholar 

  49. Politzer P, Martinez J, Murray JS, Concha MC, Toro-Labbe A (2009) Mol Phys 107:2095–2101

    Article  CAS  Google Scholar 

  50. Kim CK, Cho SG, Kim CK, Park HY, Zhang H, Lee HW (2008) J Comput Chem 29:1818–8124

    Article  CAS  Google Scholar 

  51. Belsky VK, Zorkii PM (1977) Acta Cryst A 13:1004–1006

    Article  Google Scholar 

  52. Ravi P, Tewari SP (2012) Struct Chem. doi:10.1007/s11224-012-0028-9

  53. Klapotke TM (2007) High energy density materials. Springer, Berlin

    Book  Google Scholar 

  54. Politzer P, Murray JS (2011) Central Eur J Energ Mater 8:209–220

    CAS  Google Scholar 

  55. Depluech A, Cherville J (1978) Prop Explos Pyrotech 3:169–175

    Article  Google Scholar 

  56. Depluech A, Cherville J (1979) Prop Explos Pyrotech 4:121–128

    Article  Google Scholar 

  57. Xiao HM (1994) Molecular orbital theory of nitro compounds. Publishing House of Defense Industry, Peking

    Google Scholar 

  58. Kamlet MJ, Adolph HG (1979) Prop Explos Pyrotech 4:30–34

    Article  CAS  Google Scholar 

  59. Mullay J (1987) Prop Explos Pyrotech 12:60–63

    Article  CAS  Google Scholar 

  60. Politzer P, Murray JS (1995) Mol Phys 86:251–255

    Article  CAS  Google Scholar 

  61. Murray JS, Concha MC, Politzer P (2009) Mol Phys 107:89–97

    Article  CAS  Google Scholar 

  62. Rice BM, Hare JJ (2002) J Phys Chem A 106:1770–1783

    Article  CAS  Google Scholar 

  63. Brinck T, Murray JS, Politzer P (1992) Mol Phys 76:609–617

    Article  CAS  Google Scholar 

  64. Murray JS, Lane P, Politzer P (1995) Mol Phys 85:1–8

    Article  CAS  Google Scholar 

  65. Murray JS, Lane P, Politzer P (1998) Mol Phys 93:187–194

    Article  CAS  Google Scholar 

  66. Pospìŝil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) J Mol Model 16:895–901

    Article  Google Scholar 

  67. Zeman S (1999) J Energetic Mater 17:305–329

    Article  CAS  Google Scholar 

  68. Zeman S (2006) J Hazard Mater 132:155–164

    Article  CAS  Google Scholar 

  69. Manolopoulos DE, May JC, Down SE (1991) Chem Phys Lett 181:105–111

    Article  CAS  Google Scholar 

  70. Hess BA Jr, Schaad LJ (1971) J Am Chem Soc 93:2413–2416

    Article  CAS  Google Scholar 

  71. Haddon RC, Fukunaga T (1980) Tetrahedron Lett 21:191–1192

    Article  Google Scholar 

  72. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) J Am Chem Soc 110:1113–1127

    Article  CAS  Google Scholar 

  73. Zhou Z, Parr RG, Garst JF (1988) Tetrahedron Lett 29:4843–4846

    Article  CAS  Google Scholar 

  74. Zhou Z, Parr RG (1989) J Am Chem Soc 111:7371–7379

    Article  CAS  Google Scholar 

  75. Liu X, Schmalz TG, Klein DJ (1992) Chem Phys Lett 188:550–554

    Article  CAS  Google Scholar 

  76. Parr RG, Zhou Z (1993) Acc Chem Res 26:256–258

    Article  CAS  Google Scholar 

  77. Aihara J, Oe S, Yoshida M, Ozawa E (1996) J Comput Chem 17:1387–1394

    Article  CAS  Google Scholar 

  78. Aihara J (1999) J Phys Chem A 103:7487–7495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the referees for enlightening comments and useful suggestions. We thank Defense Research Development Organization, India for the financial assistance through Advanced Centre of Research in High Energy Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravi, P., Babu, B.K. & Tewari, S.P. Theoretical investigations on the structure, density, thermodynamic and performance properties of amino-, methyl-, nitroso- and nitrotriazolones. J Mol Model 19, 33–48 (2013). https://doi.org/10.1007/s00894-012-1515-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1515-z

Keywords

Navigation