Skip to main content
Log in

Active components of frequently used β-blockers from the aspect of computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the active components of representative drugs for blood pressure regulation by applying quantum mechanical computer codes and comparison of the same for the sake of obtaining knowledge about the properties associated with the electronic structure of given molecules. The study included three well-known, but not theoretically investigated enough, active components of β-blockers: acebutolol, metoprolol and atenolol. The results are in agreement with the experimental data and were used for initial assumptions concerning the degradation of these compounds.

Active components of frequently used β-blockers 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  2. Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355:1789–1790

    Article  CAS  Google Scholar 

  3. Jorgensen SE, Halling-Sorensen B (2000) Drugs in the environment. Chemosphere 40:691–699

    Article  CAS  Google Scholar 

  4. Liu QT, Cumming RI, Sharpe AD (2009) Photo-induced environmental depletion processes of beta-blockers in river waters. Photochem Photobiol Sci 8:768–777

    Article  CAS  Google Scholar 

  5. Alder AC, Schaffner C, Majewsky M, Klasmeier J, Fenner K (2010) Fate of β-blocker human pharmaceuticals in surface water: comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Res 44:936–948

    Article  CAS  Google Scholar 

  6. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  7. Piram A, Salvador A, Verne C, Herbreteau B, Faure R (2008) Photolysis of β-blockers in environmental waters. Chemosphere 73:1265–1271

    Article  CAS  Google Scholar 

  8. Yang H, An T, Li G, Song W, Cooper WJ, Luo H, Guo X (2010) Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: a case of β-blockers. J Hazard Mater 179:834–839

    Article  CAS  Google Scholar 

  9. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(suppl 6):907–938

    Article  CAS  Google Scholar 

  10. Abramović B, Kler S, Šojić D, Laušević M, Radović T, Vione D (2011) Photocatalytic degradation of metoprolol tartrate in suspensions of two TiO2-based photocatalysts with different surface area. Identification of intermediates and proposal of degradation pathways. J Hazard Mater 198:123–132

    Article  Google Scholar 

  11. Romero V, De la Cruz N, Dantas RF, Marco P, Giménez J, Esplugas S (2011) Photocatalytic treatment of metoprolol and propranolol. Catal Today 161:115–120

    Article  CAS  Google Scholar 

  12. Silverstein RM, Webster FX (1997) Spectrometric identification of organic compounds. Wiley, New York

  13. Ghafouri R, Anafcheh M (2012) A computational NICS and 13C NMR characterization of C 60-nSi n heterofullerenes (n = 1, 2, 6, 12, 20, 24, 30). J Clust Sci doi: 10.1007/s10876-012-0456-0

  14. Corminboeuf C, Fowler PW, Heine T (2002) 13C NMR patterns of C36H2x fullerene hydrides. Chem Phys Lett 361:405–410

    Article  CAS  Google Scholar 

  15. Anafcheh M, Hadipour NL (2011) A computational NICS and 13C NMR characterization of BN-substituted 60C fullerenes. Phys E 44:400–404

    Article  CAS  Google Scholar 

  16. Schleyer PVR, Maerker C, Dransfeld A, Jiao H, Van Eikema Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  17. Hensen J (2010) Molecular modeling basics. Taylor and Francis, Boca Raton

    Google Scholar 

  18. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) GAMESS VERSION = 12 JAN 2009 (R3). J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  19. Bode BM, Gordon MS (1998) MacMolPlt: a graphical user interface for GAMESS. J Mol Graph Model 16:133–138

    Article  CAS  Google Scholar 

  20. Avogadro: an open-source molecular builder and visualization tool. Version 1.0.3 http://avogadro.openmolecules.net/

  21. Wolinski K, Hinton JF, Pulay P (1990) Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 112:8251–8260

    Article  CAS  Google Scholar 

  22. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JRT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford CT

  24. Pearson RG (1989) Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  25. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  26. Chandrakumar KRS, Ghanty TK, Ghosh SK (2004) Relationship between ionization potential, polarizability, and softness: a case study of lithium and sodium metal clusters. J Phys Chem A 108:6661–6666

    Article  CAS  Google Scholar 

  27. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  28. Kalaichelvan S, Sundaraganesan N, Dereli O, Sayin U (2012) Experimental, theoretical calculations of the vibrational spectra and conformational analysis of 2,4-di-tert-butylphenol. Spectrochim Acta A 85:198–209

    Article  CAS  Google Scholar 

  29. Ozdemir N, Eren B, Dincer M, Bekdemir Y (2010) Experimental and ab initio computational studies on 4-(1H-benzo[d]imidazol-2-yl)-N, N-dimethylaniline. Mol Phys 108:13–24

    Article  CAS  Google Scholar 

  30. Politzer P, Murray JS (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  31. Okulik N, Jubert AH (2004) Theoretical study on the structure and reactive sites of non-steroidal anti-inflammatory drugs. J Mol Struct (THEOCHEM) 682:55–62

    Article  CAS  Google Scholar 

  32. Doll TE, Frimmel FH (2003) Fate of pharmaceuticals—photodegradation by simulated solar UV-light. Chemosphere 52:1757–1769

    Article  CAS  Google Scholar 

  33. Corminboeuf C, Heine T, Seifert G, PvR S, Weber J (2004) Induced magnetic fields in aromatic [n]-annulenes—interpretation of NICS tensor components. Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  34. Oziminski WP (2012) Tautomeric equilibria and aromaticity of phosphodiazoles: an ab initio study. J Theor Comput Chem 980:92–100

    Article  CAS  Google Scholar 

  35. Zielińska-Pisklak MA, Pisklak DM, Wawer I (2011) 1H and 13C NMR characteristics of β-blockers. Magn Reson Chem 49:284–290

    Article  Google Scholar 

  36. Teksin ZS, Hom K, Balakrishnan A, Polli JE (2006) Ion pair-mediated transport of metoprolol across a three lipid-component PAMPA system. J Control Release 116:50–57

    Article  CAS  Google Scholar 

  37. Rossini AJ, Mills RW, Briscoe GA, Norton EL, Geier SJ, Hung I, Zheng S, Autschbach J, Schurko RW (2009) Solid-state chlorine NMR of group IV transition metal organometallic complexes. J Am Chem Soc 131:3317–3330

    Article  CAS  Google Scholar 

  38. Autschbach J, Zheng S, Schurko RW (2010) Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs. Concept Magn Reson A 36:84–126

    Google Scholar 

  39. Xavier RJ, Gobinath E (2012) FT-IR, FT-Raman, ab initio and DFT studies, HOMO–LUMO and NBO analysis of 3-amino-5-mercapto-1,2,4-triazole. Spectrochim Acta A 86:242–251

    Article  CAS  Google Scholar 

  40. Irikura KK (1998) Computational thermochemistry: prediction and estimation of molecular thermodynamics (ACS Symposium Series 677). American Chemical Society, Washington

    Book  Google Scholar 

  41. Yurdakul Ş, Badoģlu S (2011) Quantum chemical studies on prototautomerism of 1H-imidazo[4,5-c]pyridine. Int J Quantum Chem 111:2944–2959

    Article  CAS  Google Scholar 

  42. Chavatte P, Yous S, Marot C, Baurin N, Lesieur D (2001) Three-dimensional quantitative structure–activity relationships of cyclo-oxygenase-2 (COX–2) inhibitors: a comparative molecular field analysis. J Med Chem 44:3223–3230

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is done within the project of the Ministry of Education and Science of Republic of Serbia grant no. OI 171039.

We express our gratitude to our dear friend and colleague Igor Vragović for providing us computational resources with Gaussian 03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevan Armaković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armaković, S., Armaković, S.J., Šetrajčić, J.P. et al. Active components of frequently used β-blockers from the aspect of computational study. J Mol Model 18, 4491–4501 (2012). https://doi.org/10.1007/s00894-012-1457-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1457-5

Keywords

Navigation