Skip to main content
Log in

XZP + 1d and XZP + 1d-DKH basis sets for second-row elements: application to CCSD(T) zero-point vibrational energy and atomization energy calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Recently, segmented all-electron contracted double, triple, quadruple, quintuple, and sextuple zeta valence plus polarization function (XZP, X = D, T, Q, 5, and 6) basis sets for the elements from H to Ar were constructed for use in conjunction with nonrelativistic and Douglas–Kroll–Hess Hamiltonians. In this work, in order to obtain a better description of some molecular properties, the XZP sets for the second-row elements were augmented with high-exponent d “inner polarization functions,” which were optimized in the molecular environment at the second-order Møller-Plesset level. At the coupled cluster level of theory, the inclusion of tight d functions for these elements was found to be essential to improve the agreement between theoretical and experimental zero-point vibrational energies (ZPVEs) and atomization energies. For all of the molecules studied, the ZPVE errors were always smaller than 0.5 %. The atomization energies were also improved by applying corrections due to core/valence correlation and atomic spin-orbit effects. This led to estimates for the atomization energies of various compounds in the gaseous phase. The largest error (1.2 kcal mol−1) was found for SiH4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  2. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  3. Wilson AK, van Mourik T, Dunning TH Jr (1996) Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J Mol Struct (THEOCHEM) 388:339–349

    CAS  Google Scholar 

  4. Van Mourik T, Dunning TH Jr (2000) Gaussian basis sets for use in correlated molecular calculations. VIII. Standard and augmented sextuple zeta correlation consistent basis sets for aluminum through argon. Int J Quantum Chem 76:205–221

    Article  Google Scholar 

  5. Kendall RA, Dunning TH Jr (1992) Electron affinities of the first–row atoms revisited. Systematic basis sets and wave functions. J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  6. Jensen F (2001) Polarization consistent basis sets: Principles. J Chem Phys 115:9113–9125

    Article  CAS  Google Scholar 

  7. Jensen F (2002) Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit. J Chem Phys 116:7372–7379

    Article  CAS  Google Scholar 

  8. Canal Neto A, Muniz EP, Centoducatte R, Jorge FE (2005) Gaussian basis sets for correlated wave functions. Hydrogen, helium, first- and second-row atoms. J Mol Struct (THEOCHEM) 718:219–224

    Article  CAS  Google Scholar 

  9. Barbieri PL, Fantin PA, Jorge FE (2006) Gaussian basis sets of triple and quadruple zeta valence quality for correlated wave functions. Mol Phys 104:2945–2954

    Article  CAS  Google Scholar 

  10. Jorge FE, Sagrillo PS, Oliveira AR (2006) Gaussian basis sets of 5 zeta valence quality for correlated wave functions. Chem Phys Lett 432:558–563

    Article  CAS  Google Scholar 

  11. Campos CT, Ceolin GA, Canal Neto A, Jorge FE, Pansini FNN (2011) Gaussian basis set of sextuple zeta quality for hydrogen through argon. Chem Phys Lett 516:125–130

    Article  CAS  Google Scholar 

  12. De Oliveira PJP, Jorge FE (2008) Basis-set convergence of nuclear magnetic shielding constants in molecular HF and MP2 calculations. J Phys B: At Mol Opt Phys 41:145101

    Article  Google Scholar 

  13. Feller D, Peterson KA, de Jong WA, Dixon DA (2003) Performance of coupled cluster theory in thermochemical calculations of small halogenated compounds. J Chem Phys 118:3510–3522

    Article  CAS  Google Scholar 

  14. Douglas M, Kroll NM (1974) Quantum electrodynamical corrections to the fine structure of helium. Annu Phys 82:89–155

    Article  CAS  Google Scholar 

  15. Hess BA (1985) Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. Phys Rev A 32:756–763

    Article  CAS  Google Scholar 

  16. Hess BA (1986) Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. Phys Rev A 33:3742–3748

    Article  CAS  Google Scholar 

  17. De Jong WA, Harrison RJ, Dixon DA (2001) Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J Chem Phys 114:48–53

    Article  Google Scholar 

  18. Jorge FE, Canal Neto A, Camiletti GG, Machado SF (2009) Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: estimating scalar relativistic effects of some atomic and molecular properties. J Chem Phys 130:064108

    Article  CAS  Google Scholar 

  19. Feller D, Dixon DA (2001) Extended benchmark studies of coupled cluster theory through triple excitations. J Chem Phys 115:3484–3496

    Article  CAS  Google Scholar 

  20. Feller D, Peterson KA (1999) Re-examination of atomization energies for the Gaussian-2 set of molecules. J Chem Phys 110:8384–8396

    Article  CAS  Google Scholar 

  21. Kupka T (2009) Complete basis set prediction of methanol isotropic nuclear magnetic shieldings and indirect nuclear spin–spin coupling constants (SSCC) using polarization-consistent and XZP basis sets and B3LYP and BHandH density functionals. Magn Reson Chem 47:674–683

    Article  CAS  Google Scholar 

  22. Buczek A, Kupka T, Broda MA (2011) Extrapolation of water and formaldehyde harmonic and anharmonic frequencies to the B3LYP/CBS limit using polarization consistent basis sets. J Mol Model 17:2029–2040

    Article  CAS  Google Scholar 

  23. Buczek A, Kupka T, Broda MA (2011) Estimation of formamide harmonic and anharmonic modes in the Kohn–Sham limit using the polarization consistent basis sets. J Mol Model 17:2265–2274

    Article  CAS  Google Scholar 

  24. Özpınar GA, Peukert W, Clark T (2010) An improved generalized AMBER force field (GAFF) for urea. J Mol Model 16:1427–1440

    Article  Google Scholar 

  25. Özpınar GA, Kaufmann DE, Clark T (2011) Formation of the Vilsmeier–Haack complex: the performance of different levels of theory. J Mol Model 17:3209–3217

    Article  Google Scholar 

  26. Bauschlicher CW Jr, Partridge H (1995) The sensitivity of B3LYP atomization energies to the basis set and a comparison of basis set requirements for CCSD(T) and B3LYP. Chem Phys Lett 240:533–540

    Article  CAS  Google Scholar 

  27. Martin JML (1998) Basis set convergence study of the atomization energy, geometry, and anharmonic force field of SO2: the importance of inner polarization functions. J Chem Phys 108:2791–2800

    Article  CAS  Google Scholar 

  28. Bauschlicher CW Jr, Ricca A (1998) Atomization energies of SO and SO2: basis set extrapolation revised. J Phys Chem A 102:8044–8050

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

    Google Scholar 

  30. Lide DR (ed) (1994) CRC handbook of chemistry and physics. CRC, London

  31. Helgaker T, Klopper W, Koch H, Noga J (1997) Basis-set convergence of correlated calculations on water. J Chem Phys 106:9639–9646

    Article  CAS  Google Scholar 

  32. Halkier A, Helgaker T, Jorgenson P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem Phys Lett 286:243–252

    Article  CAS  Google Scholar 

  33. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  34. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree–Fock, Møller–Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  35. Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  36. Andrade SG, Gonçalves LCS, Jorge FE (2008) Scaling factors for fundamental vibrational frequencies and zero-point energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies. J Mol Struct (THEOCHEM) 864:20–25

    Article  CAS  Google Scholar 

  37. Jackson VE, Craciun R, Dixon DA, Peterson KA, de Jong WA (2008) Prediction of vibrational frequencies of UO 2+2 at the CCSD(T) level. J Phys Chem A 112:4095–4099

    Article  CAS  Google Scholar 

  38. Barone V (2005) Anharmonic vibrational properties by a fully automated second-order perturbative approach. J Chem Phys 122:014108–014110

    Article  Google Scholar 

  39. Cane E, Trombetti A (2009) The anharmonic force field of 1,3-cyclopentadienes. Phys Chem Chem Phys 11:2428–2432

    Article  CAS  Google Scholar 

  40. Chase MW Jr, Davies AC, Downey JR Jr, Fruirip DJ, McDonald RA, Syverud AN (1985) JANAF thermochemical tables, 3rd edn. J Phys Chem Ref Data 14 (Suppl 1)

  41. Chase MW Jr (1998) NIST-JANAF tables, 4th edn. J Phys Chem Ref Data 9:1–1951

  42. Bauschlicher CW Jr (2000) The scalar relativistic contribution to the atomization energies of CF, CF4, and SiF4. J Phys Chem A 104:2281–2283

    Article  CAS  Google Scholar 

  43. Moore CE (1971) Atomic energy levels (NSRDS-NBS 35). Office of Standard Reference Data, National Bureau of Standards, Washington

  44. Lee TJ, Scuseria GE (1995) In: Langhoff SR (ed) Quantum mechanical electronic structure calculations with chemical accuracy. Kluwer, Dordrecht, The Netherlands

  45. Saito S (1969) Microwave spectrum of sulfur dioxide in doubly excited vibrational states and determination of the γ constants. J Mol Spectrosc 30:1–16

    Article  CAS  Google Scholar 

  46. Lafferty WJ, Pine AS, Flaud J-M, Camy-Peyret C (1993) The 2ν 3 band of 32S16O2: line positions and intensities. J Mol Spectrosc 157:499–511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Espírito Santo (Brazilian Agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco E. Jorge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, C.T., Jorge, F.E. & Alves, J.M.A. XZP + 1d and XZP + 1d-DKH basis sets for second-row elements: application to CCSD(T) zero-point vibrational energy and atomization energy calculations. J Mol Model 18, 4081–4088 (2012). https://doi.org/10.1007/s00894-012-1409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1409-0

Keywords

Navigation