Skip to main content
Log in

Metals in proteins: cluster analysis studies

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have conducted a prospective analysis of the Protein Data Bank in order to study certain constituents of proteins: elements that are neither halogens nor phosphorus nor part of the biological amino acid set. A sample of 5749 structures was analyzed and classified according to the 56 elements encountered. Fifteen metals (Na, Mg, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd, W, Hg) are involved in almost half of the structures, with each metal figuring in more than 100 structures. We analyzed this subsample in more detail by computing the amino acid residues occurring within a coordination sphere of 5 Å centered on the element, and using methods of cluster analysis to group the elements. The analyses undertaken here are able to distinguish between real components of proteins and elements inserted by artefacts of the crystallization process or experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Google Scholar 

  2. Alden RA, Birktoft JJ, Kraut J, Robertus JD, Wright CS (1971) Atomic coordinates for subtilisin BPN' (or Novo). Biochem Biophys Res Commun 45(2):337–344

    Article  CAS  Google Scholar 

  3. Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B, Ehrenberg M, van Heel M (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421:90–94

    Google Scholar 

  4. Tamames B, Sousa SS, Tamames JAC, Fernandes PA, Ramos MJ (2007) Analysis of zinc ligand bond lengths in metalloproteins: trends and patterns. Proteins 69:466–475

    Google Scholar 

  5. Kretsinger RH, Nockolds CE (1973) Carp muscle calcium-binding protein. 2. Structure determination and general description. J Biol Chem 248(9):3313–3326

    CAS  Google Scholar 

  6. Kirberger M, Wang X, Deng H, Yang W, Chen G, Yang JJ (2008) Statistical analysis of structural characteristics of protein Ca2+-binding sites. J Biol Inorg Chem 13(7):1169–1181

    Article  CAS  Google Scholar 

  7. Harding MM (2004) The architecture of metal coordination groups in proteins. Acta Crystallogr D 60(Pt 5):849–859

    Google Scholar 

  8. Harding MM (2002) Metal–ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr D 58(Pt 5):872–874

    Google Scholar 

  9. Harding MM (2001) Geometry of metal–ligand interactions in proteins. Acta Crystallogr D 57(Pt 3):401–411

    Google Scholar 

  10. Harding MM (1999) The geometry of metal–ligand interactions relevant to proteins. Acta Crystallogr D 55(Pt 8):1432–443

    Google Scholar 

  11. Harding MM (2006) Small revisions to predicted distances around metal sites in proteins. Acta Crystallogr D 62:678–682

    Google Scholar 

  12. Dokmanic I, Sikic M, Tomic S (2008) Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Crystallogr D 64(Pt 3):257–263

    Google Scholar 

  13. Hsin K, Sheng Y, Harding MM, Taylor P, Walkinshaw MD (2008) MESPEUS: a database of the geometry of metal sites in proteins. J Appl Cryst 41:963–968

    Google Scholar 

  14. Microsoft Corporation (2007) Access and Excel 2007. Microsoft Corporation, Redmond

  15. Rohlf FJ (2004) NTSYSpc (numerical taxonomy system), v.2.2. Applied Biostatistics, Inc., Port Jefferson

  16. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. WH Freeman and Co., San Francisco

  17. Rohlf FJ, Fisher DL (1968) Test for hierarchical structure in random data sets. Systematic Zool 17:407–412

    Article  Google Scholar 

  18. Lapointe FJ, Legendre P (1992) Statistical significance of the matrix correlation-coefficient for comparing independent phylogenetic trees. Syst Biol 41:378–384

    Google Scholar 

  19. Branco RJF, Fernandes PA, Ramos MJ (2006) Cu, Zn superoxide dismutase: distorted active site binds substrate without significant energetic cost. Theor Chem Acc 115(1):27–31

    Google Scholar 

  20. Branco RJF, Fernandes PA, Ramos MJ (2006) Molecular dynamics simulations of the enzyme Cu, Zn superoxide dismutase. J Phys Chem B 110(33):16754–16762

    Article  CAS  Google Scholar 

  21. Aposhian HV, Zakharyan RA, Avram MD, Sampayo-Reyes A, Wollenberg ML (2004) A review of the enzymology of arsenic metabolism and a new potential role of hydrogen peroxide in the detoxication of the trivalent arsenic species. Toxicol Appl Pharmacol 198:327–335

    Article  Google Scholar 

  22. Murphy JN, Saltikov CW (2009) The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. strain ANA-3. J Bacteriol 191:6722–6731

    Google Scholar 

  23. Steele RA, Opella SJ (1997) Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36(23):6885–6895

    Article  CAS  Google Scholar 

  24. Burling FT, Weis WI, Flaherty KM, Brunger AT (1996) Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science 271(5245):72–77

    Article  CAS  Google Scholar 

  25. Tornaselli S, Zanzoni S, Ragona L, Gianolio E, Aime S, Assfalg M, Molinari H (2008) Solution structure of the supramolecular adduct between a liver cytosolic bile acid binding protein and a bile acid-based gadolinium(III)-chelate, a potential hepatospecific magnetic resonance imaging contrast agent. J Med Chem 51:6782–6792

    Google Scholar 

  26. Quillin ML, Breyer WA, Griswold IJ, Matthews BW (2000) Size versus polarizability in protein–ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme. J Mol Biol 302:955–977

    Google Scholar 

  27. Olia AS, Casjens S, Cingolani G (2009) Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas. Protein Sci 18(3):537–548

    CAS  Google Scholar 

  28. Sousa SF, Fernandes PA, Ramos MJ (2007) The carboxylate shift in zinc enzymes: a computational study. J Am Chem Soc 129(5):1378–1385

    Article  CAS  Google Scholar 

  29. Lowther WT, Zhang Y, Sampson PB, Honek JF, Matthews BW (1999) Insights into the mechanism of Escherichia coli methionine aminopeptidase from the structural analysis of reaction products and phosphorus-based transition-state analogues. Biochemistry 38(45):14810–14809

    Google Scholar 

  30. Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC (2000) Structural basis of collagen recognition by integrin alpha2beta1. Cell 101(1):47–56

    Article  CAS  Google Scholar 

  31. Smith C, Estavillo D, Emsley J, Bankston LA, Liddington RC, Cruz MA (2000) Mapping the collagen-binding site in the I domain of the glycoprotein Ia/IIa (integrin alpha(2)beta(1)). J Biol Chem 275(6):4205–4209

    Article  CAS  Google Scholar 

  32. Branco RJF, Fernandes PA, Ramos MJ (2005) Density-functional calculations of the Cu, Zn superoxide dismutase redox potential: the influence of active site distortion. J Mol Struct 729(1–2):141–146

    Google Scholar 

  33. Paraskevopoulos K, Sundararajan M, Surendran R, Hough MA, Eady RR, Hillier IH, Hasnain SS (2006) Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin. Dalton Trans 25:3067–3076

    Google Scholar 

  34. Vallee BL, Auld DS (1990) Active-site zinc ligands and activated H2O of zinc enzymes. Proc Natl Acad Sci USA 87(1):220–224

    Google Scholar 

  35. Sousa SF, Fernandes PA, Ramos MJ (2005) Unraveling the mechanism of the farnesyltransferase enzyme. J Biol Inorg Chem 10(1):3–10

    Article  CAS  Google Scholar 

  36. Sousa SF, Fernandes PA, Ramos MJ (2009) The search for the mechanism of the reaction catalyzed by farnesyltransferase. Chemistry 15(17):4243–4247

    Article  CAS  Google Scholar 

  37. Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS (2003) Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J 22(22):5963–5974

    Article  CAS  Google Scholar 

  38. Delelis O, Carayon K, Saib A, Deprez E, Mouscadet JF (2008) Integrase and integration: biochemical activities of HIV-1 integrase. Retrovirology 5:114

    Article  Google Scholar 

  39. Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A (2009) Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 276(11):2926–2946

    Article  CAS  Google Scholar 

  40. Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM (2008) Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452(7183):56–61

    Article  CAS  Google Scholar 

  41. Hennig HF (1986) Metal-binding proteins as metal pollution indicators. Environ Health Perspect 65:175–187

    Article  CAS  Google Scholar 

  42. Maksimainen M, Timoharju T, Kallio JM, Hakulinen N, Turunen O, Rouvinen J (2009) Crystallization and preliminary diffraction analysis of a beta-galactosidase from Trichoderma reesei. Acta Crystallogr F 65:767–769

    Google Scholar 

  43. Hall DR, Kemp LE, Leonard GA, Marshall K, Berry A, Hunter WN (2003) The organization of divalent cations in the active site of cadmium Escherichia coli fructose-1,6-bisphosphate aldolase. Acta Crystallogr D 59(Pt 3):611–614

    Google Scholar 

  44. Zhang FL, Fu HW, Casey PJ, Bishop WR (1996) Substitution of cadmium for zinc in farnesyl:protein transferase alters its substrate specificity. Biochemistry 35(25):8166–8171

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria João Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamames, J.A.C., Ramos, M.J. Metals in proteins: cluster analysis studies. J Mol Model 17, 429–442 (2011). https://doi.org/10.1007/s00894-010-0733-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0733-5

Keywords

Navigation