Skip to main content
Log in

The 3D structures of G-Quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The unimolecular G-quadruplex structures of d(GGGTGGGTGGGTGGGT) (G1) and d(GTGGTGGGTGGGTGGGT) (G2) are known as the potent nanomolar HIV-1 integrase inhibitors, thus investigating the 3D structures of the two sequences is significant for structure-based rational anti-HIV drug design. In this research, based on the experimental data of circular dichroism (CD) spectropolarimetry and electrospray ionization mass spectrometry (ESI-MS), the initial models of G1 and G2 were constructed by molecular modeling method. The modeling structures of G1 and G2 are intramolecular parallel-stranded quadruplex conformation with three guanine tetrads. Particularly, the structure of G2 possesses a T loop residue between the first and the second G residues that are the component of two adjacent same-stranded G-tetrad planes. This structure proposed by us has a very novel geometry and is different from all reported G-quadruplexes. The extended (35 ns) molecular dynamic (MD) simulations for the models indicate that the G-quadruplexes maintain their structures very well in aqueous solution whether the existence of K+ or NH +4 in the central channel. Furthermore, we perform 500 ns MD simulations for the models in the gas phase. The results show that all the ion-G-quadruplex complexes are maintained during the whole simulations, despite the large magnitude of phosphate-phosphate repulsions. The gas phase MD simulations provide a good explanation to ESI-MS experiments. Our 3D structures for G1 and G2 will assist in understanding geometric formalism of G-quadruplex folding and may be helpful as a platform for rational anti-HIV drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Sundquist WI, Klug A (1989) Nature 342:825–829

    Article  CAS  Google Scholar 

  2. Henderson E, Hardin CC, Walk SK, Tinoco I, Blackburn EH (1987) Cell 51:899–908

    Article  CAS  Google Scholar 

  3. Williamson JR, Raghuraman MK, Cech TR (1989) Cell 59:871–880

    Article  CAS  Google Scholar 

  4. Gellert M, Lipsett MN, Davies DR (1962) Proc Natl Acad Sci USA 48:2013–2018

    Article  CAS  Google Scholar 

  5. Sundquist WI, Klug A (1989) Nature 342:825–829

    Article  CAS  Google Scholar 

  6. Sen D, Gilbert W (1988) Nature 344:410–414

    Article  Google Scholar 

  7. Todd AK, Johnston M, Neidle S (2005) Nucleic Acids Res 33:2901–2907

    Article  CAS  Google Scholar 

  8. Huppert JL, Balasubramanian S (2005) Nucleic Acids Res 33:2908–2916

    Article  CAS  Google Scholar 

  9. Huppert JL, Balasubramanian S (2007) Nucleic Acids Res 35:406–413

    Article  CAS  Google Scholar 

  10. Rando RF, Ojwang J, Elbaggari A, Reyes GR, Tinder R, McGrath MS, Hogan ME (1995) J Biol Chem 270:1754–1760

    Article  CAS  Google Scholar 

  11. Wyatt JR, Vickers TA, Roberson JL, Buckheit RW , Klimkait T, DeBaets E, Davis PW, Rayner B, Imbach JL, Ecker DJ (1994) Proc Natl Acad Sci USA 91:1356–1360

    Article  CAS  Google Scholar 

  12. Jing N, Gao X, Rando RF, Hogan ME (1997) J Biomol Struct Dyn 15:573–585

    CAS  Google Scholar 

  13. De Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andreola ML (2002) J Mol Biol 324:195–203

    Article  Google Scholar 

  14. Jing N, Hogan ME (1998) J Biol Chem 273:34992–34999

    Article  CAS  Google Scholar 

  15. Williamson JR (1994) Annu ReV Biophys Biomol Struct 23:703–730

    Article  CAS  Google Scholar 

  16. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Nucleic Acids Res 34:2723–2735

    Article  CAS  Google Scholar 

  17. Balagurumoorthy P, Brahmachari SK (1994) J Biol Chem 269:21858–21869

    CAS  Google Scholar 

  18. Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V (1992) Nucleic Acids Res 20:4061–4067

    Article  CAS  Google Scholar 

  19. Jin R, Gaffney BL, Wang C, Jones RA, Breslauer KJ (1992) Proc Natl Acad Sci USA 89:8832–8836

    Article  CAS  Google Scholar 

  20. Rezler EM, Seenisamy J, Bashyam S, Kim MY, White E, Wilson WD, Hurley LH (2005) J Am Chem Soc 127:9439–9447

    Article  CAS  Google Scholar 

  21. Balagurumoorthy P, Brahmachari SK, Mohanty D, Bansal M, Sasisekharan V (1992) Nucleic Acids Res 20:4061–4067

    Article  CAS  Google Scholar 

  22. Giraldo R, Suzuki M, Chapman L, Rhodes D (1994) Proc Natl Acad Sci USA 91:7658–7662

    Article  CAS  Google Scholar 

  23. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications. Wiley-VCH, New York

    Google Scholar 

  24. Jing N, Rando RF, Pommier Y, Hogan ME (1997) Biochemistry 36:12498–12505

    Article  CAS  Google Scholar 

  25. Hardin CC, Perry AG, White K (2001) Biopolymers 56:147–194

    Article  CAS  Google Scholar 

  26. Porumb H, Monnot M, Fermandjian S (2002) Electrophoresis 23:1013–1020

    Article  CAS  Google Scholar 

  27. Dapic V, Abdomerovic V, Marrington R, Peberdyl J, Rodgerl A, Trent JO, Bates PJ (2003) Nucleic Acids Res 31:2097–2107

    Article  CAS  Google Scholar 

  28. Hazel P, Huppert J, Balasubramanian S, Neidle S (2004) J Am Chem Soc 126:16405–16415

    Article  CAS  Google Scholar 

  29. Rachwal PA, Brown T, Fox KR (2007) Biochemistry 46:3036–3044

    Article  CAS  Google Scholar 

  30. Bugaut A, Balasubramanian S (2008) Biochemistry 47:689–697

    Article  CAS  Google Scholar 

  31. Seenisamy J, Rezler EM, Powell TJ, Tye D, Gokhale V, Joshi CS, Siddiqui-Jain A, Hurley LH (2004) J Am Chem Soc 126:8702–8709

    Article  CAS  Google Scholar 

  32. Li H, Yuan G, Du D (2008) J Am Soc Mass Spectrom 19:550–559

    Article  CAS  Google Scholar 

  33. Ren J, Qu X, Trent JO, Chaires JB (2002) Nucleic Acids Res 30:2307–2315

    Article  CAS  Google Scholar 

  34. Shammel-Baker E, Lee JT, Sessler JL, Bowers MT (2006) J Am Chem Soc 128:2641–2648

    Article  Google Scholar 

  35. Gabelica V, Teulade-Fichou MP, De Pauw E, Bowers MT (2007) J Am Chem Soc 129:895–904

    Article  CAS  Google Scholar 

  36. Rueda M, Kalko SG, Luque FJ, Orozco M (2003) J Am Chem Soc 125:8007–8014

    Article  CAS  Google Scholar 

  37. Rueda M, Luque FJ, Orozco M (2005) J Am Chem Soc 127:11690–11698

    Article  CAS  Google Scholar 

  38. Rueda M, Luque FJ, Orozco M (2006) J Am Chem Soc 128:3608–3619

    Article  CAS  Google Scholar 

  39. Gale DC, Smith RD (1995) J Am Soc Mass Spectrom 6:1154–1164

    Article  CAS  Google Scholar 

  40. Hofstadler SA, Griffey RH (2001) Chem ReV 101:377–390

    Article  CAS  Google Scholar 

  41. Gabelica V, De Pauw E (2002) Int J Mass Spectrom 219:151–159

    Article  CAS  Google Scholar 

  42. Gabelica V, De Pauw E, Rosu F (1999) J Mass Spectrom 34:1328–1337

    Article  CAS  Google Scholar 

  43. Wan KX, Shibue T, Gro ML (2000) J Am Chem Soc 122:300–307

    Article  CAS  Google Scholar 

  44. Gabelica V, Rosu R, Houssier C, De Pauw E (2000) Rapid Commun Mass Spectrom 14:464–467

    Article  CAS  Google Scholar 

  45. Rosu F, Valerica G, Houssier C, De Pauw E (2002) Nucleic Acids Res 30:e82

    Article  Google Scholar 

  46. Gabelica V, De Pauw E (2001) J Mass Spectrom 36:397–402

    Article  CAS  Google Scholar 

  47. Sponer J, Spackova N (2007) Methods 43:278–290

    Article  CAS  Google Scholar 

  48. Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi B (1997) J MOL Biol 273:171–182

    Article  CAS  Google Scholar 

  49. Ambrus A, Chen D, Dai J, Jones RA, Yang D (2005) Biochemistry 44:2048–2058

    Article  CAS  Google Scholar 

  50. Price DJ, Brooks CL (2004) J Chem Phys 121:10096–10103

    Article  CAS  Google Scholar 

  51. Darden T, Perera L, Li L, Pedersen L (1999) Structure 7:R55–R60

    Article  CAS  Google Scholar 

  52. Hauptman HA (1997) Methods Enzymol 277:3–13

    Article  CAS  Google Scholar 

  53. Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA, Orozco M (2007) Biophys J 92:3817–3829

    Article  CAS  Google Scholar 

  54. Perez A, Luque FJ, Orozco M (2007) J Am Chem Soc 129:14739–14745

    Article  CAS  Google Scholar 

  55. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker Ross C, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco

    Google Scholar 

  56. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  57. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:27–38

    Google Scholar 

  58. Amadei A, Linssen AB, Berendsen HJ (1993) Proteins 17:412–425

    Article  CAS  Google Scholar 

  59. Haider S, Parkinson GN, Neidle S (2008) Biophys J 95:296–311

    Article  CAS  Google Scholar 

  60. Kitao A, Go N (1999) Curr Opin Struct Biol 9:164–169

    Article  CAS  Google Scholar 

  61. Hess B (2000) Phys Rev E 62:8438–8448

    Article  CAS  Google Scholar 

  62. Hess B (2002) Phys Rev E 65(3 Part 1):031910

    Article  Google Scholar 

  63. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Nucleic Acids Res 34:5402–5415

    Article  CAS  Google Scholar 

  64. Smargiasso N, Rosu F, Hsia W, Colson P, Shammel-Baker E, Bowers MT, De Pauw E, Gabelica V (2008) J Am Chem Soc 130:10208–1021

    Article  CAS  Google Scholar 

  65. Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE, Kulinski T, Sponer J (2009) J Chem Theor Comput. doi:10.1021/ct900200k

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (20333050, 20673044), PCSIRT (IRT0625). We would like to thank professor David A. Case et al. for giving us the Amber 10.0 software as a freeware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Sheng Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 629 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, MH., Zhou, YH., Luo, Q. et al. The 3D structures of G-Quadruplexes of HIV-1 integrase inhibitors: molecular dynamics simulations in aqueous solution and in the gas phase. J Mol Model 16, 645–657 (2010). https://doi.org/10.1007/s00894-009-0592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0592-0

Keywords

Navigation